首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
高考专区
三轮冲刺
高考数学必胜锦囊妙计[下学期]
文档属性
名称
高考数学必胜锦囊妙计[下学期]
格式
rar
文件大小
1.7MB
资源类型
教案
版本资源
通用版
科目
数学
更新时间
2007-03-03 08:14:00
点击下载
文档简介
福建省邵武第一中学 guanyoyo@
第1讲 高考数学选择题的解题策略
一、知识整合
1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.
2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.
二、方法技巧
1、直接法:
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.
例1.若sinx>cosx,则x的取值范围是( )
(A){x|2k-<x<2k+,kZ} (B) {x|2k+<x<2k+,kZ}
(C) {x|k-<x<k+,kZ } (D) {x|k+<x<k+,kZ}
解:(直接法)由sinx>cosx得cosx-sinx<0,
即cos2x<0,所以:+kπ<2x<+kπ,选D.
另解:数形结合法:由已知得|sinx|>|cosx|,画出y=|sinx|和y=|cosx|的图象,从图象中可知选D.
例2.设f(x)是(-∞,∞)是的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )
(A) 0.5 (B) -0.5 (C) 1.5 (D) -1.5
解:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函数,得
f(-0.5)=-f(0.5)=-0.5,所以选B.
也可由f(x+2)=-f(x),得到周期T=4,所以f(7.5)=f(-0.5)=-f(0.5)=-0.5.
例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( )
(A) 1440 (B) 3600 (C) 4320 (D) 4800
解一:(用排除法)七人并排站成一行,总的排法有种,其中甲、乙两人相邻的排法有2×种.因此,甲、乙两人必需不相邻的排法种数有:-2×=3600,对照后应选B;
解二:(用插空法)×=3600.
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.
2、特例法:
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.
例4.已知长方形的四个项点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射解等于反射角),设P4坐标为(的取值范围是( )
(A) (B) (C) (D)
解:考虑由P0射到BC的中点上,这样依次反射最终回到P0,此时容易求出tan=,由题设条件知,1<x4<2,则tan≠,排除A、B、D,故选C.
另解:(直接法)注意入射角等于反射角,……,所以选C.
例5.如果n是正偶数,则C+C+…+C+C=( )
(A) 2 (B) 2 (C) 2 (D) (n-1)2
解:(特值法)当n=2时,代入得C+C=2,排除答案A、C;当n=4时,代入得C+C+C=8,排除答案D.所以选B.
另解:(直接法)由二项展开式系数的性质有C+C+…+C+C=2,选B.
例6.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为( )
(A)130 (B)170 (C)210 (D)260
解:(特例法)取m=1,依题意=30,+=100,则=70,又{an}是等差数列,进而a3=110,故S3=210,选(C).
例7.若,P=,Q=,R=,则( )
(A)RPQ (B)PQ R
(C)Q PR (D)P RQ
解:取a=100,b=10,此时P=,Q==lg,R=lg55=lg,比较可知选PQR
当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.
3、筛选法:
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.
例8.已知y=log(2-ax)在[0,1]上是x的减函数,则a的取值范围是( )
(A)(0,1) (B)(1,2) (C)(0,2) (D) [2,+∞
解:∵ 2-ax是在[0,1]上是减函数,所以a>1,排除答案A、C;若a=2,由2-ax>0得x<1,这与x∈[0,1]不符合,排除答案D.所以选B.
例9.过抛物线y=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是( )
(A) y=2x-1 (B) y=2x-2
(C) y=-2x+1 (D) y=-2x+2
解:(筛选法)由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A、C、D,所以选B;
另解:(直接法)设过焦点的直线y=k(x-1),则,消y得:
kx-2(k+2)x+k=0,中点坐标有,消k得y=2x-2,选B.
筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.
4、代入法:
将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.
例10.函数y=sin(-2x)+sin2x的最小正周期是( )
(A) (B) (C) 2 (D) 4
解:(代入法)f(x+)=sin[-2(x+)]+sin[2(x+)]=-f(x),而
f(x+π)=sin[-2(x+π)]+sin[2(x+π)]=f(x).所以应选B;
另解:(直接法)y=cos2x-sin2x+sin2x=sin(2x+),T=π,选B.
例11.函数y=sin(2x+)的图象的一条对称轴的方程是( )
(A)x=- (B)x=- (C)x= (D)x=
解:(代入法)把选择支逐次代入,当x=-时,y=-1,可见x=-是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A.
另解:(直接法) ∵函数y=sin(2x+)的图象的对称轴方程为2x+=kπ+,即
x=-π,当k=1时,x=-,选A.
代入法适应于题设复杂,结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。
5、图解法:
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.
例12.在内,使成立的的取值范围是( )
(A) (B)
(C) (D)
解:(图解法)在同一直角坐标系中分别作出y=sinx与y=cosx的图象,便可观察选C.
另解:(直接法)由得sin(x-)>0,即2 kπ<x-<2kπ+π,取k=0即知选C.
例13.在圆x+y=4上与直线4x+3y-12=0距离最小的点的坐标是( )
(A)(,) (B)(,-)
(C)(-,) (D)(-,-)
解:(图解法)在同一直角坐标系中作出圆x+y=4和直线4x+3y-12=0后,由图可知距离最小的点在第一象限内,所以选A.
直接法先求得过原点的垂线,再与已知直线相交而得.
例14.设函数 ,若,则的取值范围是( )
(A)(,1) (B)(,)
(C)(,)(0,) (D)(,)(1,)
解:(图解法)在同一直角坐标系中,作出函数
的图象和直线,它们相交于(-1,1)
和(1,1)两点,由,得或.
严格地说,图解法并非属于选择题解题思路范畴,
而是一种数形结合的解题策略.但它在解有关选择题时
非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.如:
例15.函数y=|x2—1|+1的图象与函数y=2 x的图象交点的个数为( )
(A)1 (B)2 (C)3 (D)4
本题如果图象画得不准确,很容易误选(B);答案为(C)。
数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一;历年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50%左右.
6、割补法
“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度.
例16.一个四面体的所有棱长都为,
四个项点在同一球面上,则此球的表面积为( )
(A)3 (B)4 (C)3 (D)6
解:如图,将正四面体ABCD补形成正方体,则正四面体、正方体的中
心与其外接球的球心共一点.因为正四面体棱长为,所以正方体棱长为1,
从而外接球半径R=.故S球=3.
直接法(略)
我们在初中学习平面几何时,经常用到“割补法”,在立体几何推导锥体的体积公式时又一次用到了“割补法”,这些蕴涵在课本上的方法当然是各类考试的重点内容.因此,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”.
7、极限法:
从有限到无限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程.
例17.对任意θ∈(0,)都有( )
(A)sin(sinθ)<cosθ<cos(cosθ) (B) sin(sinθ)>cosθ>cos(cosθ)
(C)sin(cosθ)<cos(sinθ)<cosθ (D) sin(cosθ)<cosθ<cos(sinθ)
解:当θ0时,sin(sinθ)0,cosθ1,cos(cosθ)cos1,故排除A,B.
当θ时,cos(sinθ)cos1,cosθ0,故排除C,因此选D.
例18.不等式组的解集是( )
(A)(0,2) (B)(0,2.5) (C)(0,) (D)(0,3)
解:不等式的“极限”即方程,则只需验证x=2,2.5,和3哪个为方程的根,逐一代入,选C.
例19.在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )
(A)(π,π) (B)(π,π)
(C)(0,) (D)(π,π)
解:当正n棱锥的顶点无限趋近于底面正多边形中心时,则底面正多边形便为极限状态,此时棱锥相邻两侧面所成二面角α→π,且小于π;当棱锥高无限大时,正n棱柱便又是另一极限状态,此时α→π,且大于π,故选(A).
用极限法是解选择题的一种有效方法.它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。
8、估值法
由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.
例20.如图,在多面体ABCDEF中,已知面ABCD是边长为
3的正方形,EF∥AB,EF,EF与面AC的距离为2,则该多面
体的体积为( )
(A) (B)5 (C)6 (D)
解:由已知条件可知,EF∥平面ABCD,则F到平面ABCD的距离为2,
∴VF-ABCD=·32·2=6,而该多面体的体积必大于6,故选(D).
例21.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是( )
(A)π (B)π (C)4π (D)π
解∵球的半径R不小于△ABC的外接圆半径r=,
则S球=4πR2≥4πr2=π>5π,故选(D).
估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.
三、总结提炼
从考试的角度来看,解选择题只要选对就行,至于用什么“策略”,“手段”都是无关紧要的.所以人称可以“不择手段”.但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速.
总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择.这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间.福建省邵武第一中学 guanyoyo@
第15讲 排列组合二项式定理和概率
一、知识整合
二、考试要求:
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
5.了解随机事件的发生存在着规律性和随机事件概率的意义.
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
Ⅰ、随机事件的概率
例1 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成.
(1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?
(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少?
解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1种,其概率为,随意按下6个数字相当于随意按下个,随意按下6个数字相当于随意按下个密码之一,其概率是.
(2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为.
例2 一个口袋内有m个白球和n个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)
解 设事件I是“从m个白球和n个黑球中任选3个球”,要对应集合I1,事件A是“从m个白球中任选2个球,从n个黑球中任选一个球”,本题是等可能性事件问题,且Card(I1)= ,于是P(A)=.
Ⅱ、互斥事件有一个发生的概率
例3在20件产品中有15件正品,5件次品,从中任取3件,求:
(1)恰有1件次品的概率;(2)至少有1件次品的概率.
解 (1)从20件产品中任取3件的取法有,其中恰有1件次品的取法为。
恰有一件次品的概率P=.
(2)法一 从20件产品中任取3件,其中恰有1件次品为事件A1,恰有2件次品为事件A2,3件全是次品为事件A3,则它们的概率
P(A1)= =,,,
而事件A1、A2、A3彼此互斥,因此3件中至少有1件次品的概率
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)= .
法二 记从20件产品中任取3件,3件全是正品为事件A,那么任取3件,至少有1件次品为,根据对立事件的概率加法公式P()=
例4 1副扑克牌有红桃、黑桃、梅花、方块4种花色,每种13张,共52张,从1副洗好的牌中任取4张,求4张中至少有3张黑桃的概率.
解 从52张牌中任取4张,有种取法.“4张中至少有3张黑桃”,可分为“恰有3张黑桃”和“4张全是黑桃”,共有种取法
注 研究至少情况时,分类要清楚。
Ⅲ、相互独立事件同时发生的概率
例5 猎人在距离100米处射击一野兔,其命中率为0.5,如果第一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.
解 记三次射击依次为事件A,B,C,其中,由,求得k=5000。
,命中野兔的概率为
例6 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:
(1)其中至少有一件废品的概率; (2)其中至多有一件废品的概率.
解: 设事件A为“从甲机床抽得的一件是废品”;B为“从乙机床抽得的一件是废品”.
则P(A)=0.05, P(B)=0.1,
(1)至少有一件废品的概率
(2)至多有一件废品的概率
Ⅳ、概率内容的新概念较多,本课时就学生易犯错误作如下归纳总结:
类型一 “非等可能”与“等可能”混同
例1 掷两枚骰子,求所得的点数之和为6的概率.
错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=
剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=.
类型二 “互斥”与“对立”混同
例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对
错解 A
剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 :
(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.
事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.
类型三 “互斥”与“独立”混同
例3 甲投篮命中率为O.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少
错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B):
剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.
解: 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,
则两人都恰好投中两次为事件A·B,于是P(A·B)=P(A)×P(B)= 0.169
四、高考题选讲
1 甲、乙二人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.
(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?
(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?(2000年新课程卷)
2 如图,用A、B、C三类不同的元件连接成两个系统N1、N2.当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90.分别求系统N1、N2正常工作的概率P1、P2. (2001年新课程卷)
3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).
(Ⅰ)求至少3人同时上网的概率;
(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)
4 有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有两件不合格的概率.(精确到0.001) (2003年新课程卷)
5. 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:
(Ⅰ)选出的3位同学中,至少有一位男同学的概率;
(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
(2004年全国卷Ⅰ)
解:本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识
解决实际问题的能力,满分12分.
解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为
1-;………………6分
(Ⅱ)甲、乙被选中且能通过测验的概率为
;………………12分
6. 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:
(Ⅰ)A、B两组中有一组恰有两支弱队的概率;
(Ⅱ)A组中至少有两支弱队的概率. (2004年全国卷Ⅱ)
解:(Ⅰ)解法一:三支弱队在同一组的概率为
故有一组恰有两支弱队的概率为
解法二:有一组恰有两支弱队的概率
(Ⅱ)解法一:A组中至少有两支弱队的概率
解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为
7.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.
(Ⅰ)求这名同学得300分的概率;
(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)
8. 从4名男生和2名女生中任选3人参加演讲比赛.
(Ⅰ)求所选3人都是男生的概率;
(Ⅱ)求所选3人中恰有1名女生的概率;
(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)
9. 某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电
(选哪一天是等可能的).假定工厂之间的选择互不影响.
(Ⅰ)求5个工厂均选择星期日停电的概率;
(Ⅱ)求至少有两个工厂选择同一天停电的概率. (2004年浙江卷)
10. 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)分别求甲、乙两人考试合格的概率;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率. (2004年福建卷)
11. 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.
(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
(2004年湖南卷)
12.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下:
预防措施 甲 乙 丙 丁
P 0.9 0.8 0.7 0.6
费用(万元) 90 60 30 10
预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前
提下,请确定一个预防方案,使得此突发事件不发生的概率最大.(2004年湖北卷)
解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.
方案2:联合采用两种预防措施,费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1—(1—0.9)(1—0.7)=0.97.
方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1—(1—0.8)(1—0.7)(1—0.6)=1—0.024=0.976.
综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.
13. 设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.
(Ⅰ)三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标概率;(Ⅱ)若甲单独向目标射击三次,求他恰好命中两次的概率. (2004年重庆卷)
14.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( D )
A. B. C. D.
15.(本小题满分12分)
一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.
解:本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.
解:P(ξ=0)=0.52×0.62=0.09.
P(ξ=1)= ×0.52×0.62+ ×0.52×0.4×0.6=0.3
P(ξ=2)= ×0.52×0.62+×0.52×0.4×0.6+ ×0.52×0.42=0.37.
P(ξ=3)= ×0.52×0.4×0.6+×0.52×0.42=0.2
P(ξ=4)= 0.52×0.42=0.04
于是得到随机变量ξ的概率分布列为:
ξ 0 1 2 3 4
P 0.09 0.3 0.37 0.2 0.04
所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.
16.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是(C )
A. B. C. D.
17.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521
的数共有 ( C )
A.56个 B.57个 C.58个 D.60个
18.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .(答案: 80)
19.标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 240
种.(以数字作答)
20.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n= 192 .
PAGE
8福建省邵武第一中学 guanyoyo@
第11讲 数列问题的题型与方法
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
二、方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则为等差数列;
②若 ,则为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列中,有关的最值问题——常用邻项变号法求解:
(1)当>0,d<0时,满足的项数m使得取最大值.
(2)当<0,d>0时,满足的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、注意事项
1.证明数列是等差或等比数列常用定义,即通过证明 或而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意与之间关系的转化。如:
= , =.
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.
四、例题解析
例1.已知数列{a}是公差d≠0的等差数列,其前n项和为S.
(2)过点Q(1,a),Q(2,a)作直线12,设l与l的夹角为θ,
证明:(1)因为等差数列{a}的公差d≠0,所以
Kpp是常数(k=2,3,…,n).
(2)直线l的方程为y-a=d(x-1),直线l的斜率为d.
例2.已知数列中,是其前项和,并且,
⑴设数列,求证:数列是等比数列;
⑵设数列,求证:数列是等差数列;
⑶求数列的通项公式及前项和。
分析:由于{b}和{c}中的项都和{a}中的项有关,{a}中又有S=4a+2,可由S-S作切入点探索解题的途径.
解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a.(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)
a-2a=2(a-2a),又b=a-2a,所以b=2b ①
已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②
由①和②得,数列{b}是首项为3,公比为2的等比数列,故b=3·2.
当n≥2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上式.
综上可知,所求的求和公式为S=2(3n-4)+2.
说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前项和。解决本题的关键在于由条件得出递推公式。
2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
例3.(04年浙江)设数列{an}的前项的和Sn=(an-1) (n+),(1)求a1;a2; (2)求证数列{an}为等比数列。
解: (Ⅰ)由,得 ∴ 又,即,得.
(Ⅱ)当n>1时,
得所以是首项,公比为的等比数列.
例4、(04年重庆)设a1=1,a2=,an+2=an+1-an (n=1,2,---),令bn=an+1-an (n=1,2---)求数列{bn}的通项公式,(2)求数列{nan}的前n项的和Sn。
解:(I)因
故{bn}是公比为的等比数列,且
(II)由
注意到可得
记数列的前n项和为Tn,则
例5.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项, 为公差的等差数列。
⑴求点的坐标;
⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。
⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
解:(1)
(2)的对称轴垂直于轴,且顶点为.设的方程为:
把代入上式,得,的方程为:。
,
=
(3),
T中最大数.
设公差为,则,由此得
说明:本例为数列与解析几何的综合题,难度较大(1)、(2)两问运用几何知识算出,解决(3)的关键在于算出及求数列的公差。
例6.数列中,且满足
⑴求数列的通项公式;
⑵设,求;
⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
解:(1)由题意,,为等差数列,设公差为,
由题意得,.
(2)若,
时,
故
(3)
若对任意成立,即对任意成立,
的最小值是,的最大整数值是7。
即存在最大整数使对任意,均有
说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。.
五、强化训练
(一)用基本量方法解题
1、(04年浙江)已知等差数列的公差为2,若a1,a3,a4成等比数列,则a2= (B )
A -4 B -6 C -8 D -10
(二)用赋值法解题
2、(96年)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(C )
A 130 B 170 C 210 D 260
3、(01年)设{an}是公比为q的等比数列, Sn是{an}的前n项和,若{Sn}是等差数列,则q=__1_
4、设数列{an}的前项的和Sn= (对于所有n1),且a4=54,则a1=__2___
(三)用整体化方法解题
5、(00年)已知等差数列{an}满足a1+a2+a3+…+a101=0,则有(C )
A a1+a101>0 B a2+a100<0 C a3+a99=0 D a51=51
6、(02年)若一个等差数列的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为(A)
A 13 B 12 C 11 D 10
7、(03年上海)在等差数列{an}中a5=3,a6=-2,a4+a5+…+a10=-49
(四)用函数方法解题
8、(04年天津)已知数列{an},那么“对任意的nN+,点Pn(n ,an)都在直线y=x+1上”是“{an}为等差数列”的( B)
A必要条件 B 充分条件 C 充要条件 D 既不充分也不必要条件
9、(99年上海)已知等差数列{an}满足3a4=7a7,且a1>0,Sn是{an}的前n项和,Sn取得最大值,则n=___9______.
10、(01年上海)已知数列{an}中an=2n-7,(nN+),++--+=_153___
(五)用递推方法解题
11、(03年全国)设{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0,求它的通项公式是__1/n
12、(04年全国)已知数列{an}满足a.1=1,an=a1+2a2+3a3+---+(n-1)an-1 (n>1),则{an}的通项an=______a1=1;an=n2
13、(04年北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列是等和数列,且,公和为5,那么的值为__3___,这个数列的前n项和的计算公式为__当n为偶数时,;当n为奇数时,
14. (04年全国)已知数列{an}中,a1=1,a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…。
(1)求a3,a5; (2)求{an}的通项公式
解:(I)a2=a1+(-1)1=0, a3=a2+31=3.a4=a3+(-1)2=4 a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k,
同理a2k-1-a2k-3=3k-1+(-1)k-1, a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)
=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1=(3k-1)+[(-1)k-1],
于是a2k+1=a2k= a2k-1+(-1)k=(-1)k-1-1+(-1)k=(-1)k=1.
{an}的通项公式为:
当n为奇数时,an =
当n为偶数时,
PAGE
7第16讲 概率与统计
概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:
类型一 “非等可能”与“等可能”混同
例1 掷两枚骰子,求所得的点数之和为6的概率.
错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=
剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=.
类型二 “互斥”与“对立”混同
例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对
错解 A
剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 :
(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.
事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.
类型三 “互斥”与“独立”混同
例3 甲投篮命中率为O.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少
错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B):
剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.
解: 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,
则两人都恰好投中两次为事件A·B,于是P(A·B)=P(A)×P(B)= 0.169
类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同
例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.
错解 记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=.
剖析 本题错误在于P(AB)与P(B/A)的含义没有弄清, P(AB)表示在样本空间S中,A与B同时发生的概率;而P(B/A)表示在缩减的样本空间SA中,作为条件的A已经发生的条件下事件B发生的概率。
解: P(C)= P(AB)=P(A)P(B/A)=.
备用
1. 某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求
(I) 恰有一名参赛学生是男生的概率;
(II)至少有一名参赛学生是男生的概率;
(Ⅲ)至多有一名参赛学生是男生的概率。
解:基本事件的种数为=15种
(Ⅰ)恰有一名参赛学生是男生的基本事件有=9种 所求事件概率P1==0.6
(Ⅱ)至少有一名参赛学生是男生这一事件是由两类事件构成的,即恰有一名参赛学生是男生和两名参赛学生都是男生,所求事件概率P2=
(Ⅲ)至多有一名参赛学生是男生这一事件也是由两类事件构成的,即参赛学生没有男生和恰有一名参赛学生是男生,所求事件概率P3=
2. 已知两名射击运动员的射击水平,让他们各向目标靶射击10次,其中甲击中目标7次,乙击中目标6次,若在让甲、乙两人各自向目标靶射击3次中,求:(1)甲运动员恰好击中目标2次的概率是多少?(2)两名运动员都恰好击中目标2次的概率是多少?(结果保留两位有效数字)
解. 甲运动员向目标靶射击1次,击中目标的概率为7/10=0.7
乙运动员向目标靶射击1次,击中目标的概率为6/10=0.6
(1)甲运动员向目标靶射击3次,恰好都击中目标2次的概率是
(2)乙运动员各向目标靶射击3次,恰好都击中目标2次的概率是
作业
1. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率
是p2,那么恰好有1人解决这个问题的概率是 ( )
(A) (B) (C) (D)
2. 连续掷两次骰子,以先后得到的点数m、n为点P(m,n)的坐标,那么点P在圆x2+y2=17外部的概率应为( )
(A) (B) (C) (D)
3. 从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率
相等,那么总体中的每个个体被抽取的概率等于_______。
4. 若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 .
(结果用分数表示)
5. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.
(Ⅰ)摸出2个或3个白球 ; (Ⅱ)至少摸出一个黑球.
6. 已知甲、乙两人投篮的命中率分别为0.4和0.6.现让每人各投两次,试分别求下列事件的概率:(Ⅰ)两人都投进两球;(Ⅱ)两人至少投进三个球.
作业答案
1. B 2. D 3. 0.05 4.
5.(Ⅰ)P(A+B)= P(A)+P(B)==; (Ⅱ) P=-=
6.(Ⅰ)P(两人都投进两球)= =
(Ⅱ)P(两人至少投进三个球)=
第二课时
例题
例1 甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.
(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?
(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?(2000年新课程卷)
例2 如图,用A、B、C三类不同的元件连接成两个系统N1、N2.当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90.分别求系统N1、N2正常工作的概率P1、P2. (2001年新课程卷)
例3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).
(Ⅰ)求至少3人同时上网的概率;
(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)
例4 有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有两件不合格的概率.(精确到0.001) (2003年新课程卷)
备用 从分别写有0,1,2,3,4,5,6的七张卡片中,任取4张,组成没有重复数字的四位数,计算:
(1)这个四位数是偶数的概率;
(2)这个四位数能被9整除的概率;
(3)这个四位数比4510大的概率。
解: (1)组成的所有四位数共有个。四位偶数有:个位是0时有,个位不是0时有,共有120+300=420个.
组成的四位数为偶数的概率为
(2)能被9整除的数,应该各位上的数字和能被9整除.数字组合为:1,2,6,0 1,3,5,0 2,4,5,0 3,4,5,6 2,3,4,0 此时共有.
能被9整除的四位数的概率为
(3)比4510大的数分别有:千位是4,百位是5时,有;千位是4,百位是6时,有;千位大于4时,有;故共有240+20+18=278.
四位数且比4510大的概率为
作业
1. 一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自
动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( )
(A)0.1536 (B) 0.1808 (C) 0.5632 (D) 0.9728
2. 种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为 ( )
(A) p+q-2p q (B) p+q-pq (C) p+q (D) pq
3. 有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和
3,现任取出3面,它们的颜色与号码不相同的概率是 .
4. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女
生当选的概率是 (用分数作答)
5. 某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次口错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.
6. 如图,用表示四类不同的元件连接成系统.当元件至少有一个正常工作且元件至少有一个正常工作时,系统
正常工作.已知元件正常工作的概率
依次为0.5,0.6,0.7,0.8,求元件连接成的系
统正常工作的概率.
例题答案
1. (Ⅰ) ; (Ⅱ). 2. 0.648; 0.792. 3. (Ⅰ) ; (Ⅱ) 5人. 4. (Ⅰ) 0.176 ; (Ⅱ) 0.012 .
作业答案
1. D 2. A 3. 4. 5.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品. 概率为
P==0.1998
6.解: =0.752
第三课时
例题
例1 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:
(Ⅰ)选出的3位同学中,至少有一位男同学的概率;
(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
(2004年全国卷Ⅰ)
例2 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:
(Ⅰ)A、B两组中有一组恰有两支弱队的概率;
(Ⅱ)A组中至少有两支弱队的概率. (2004年全国卷Ⅱ)
例3 某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.
(Ⅰ)求这名同学得300分的概率;
(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)
例4 从4名男生和2名女生中任选3人参加演讲比赛.
(Ⅰ)求所选3人都是男生的概率;
(Ⅱ)求所选3人中恰有1名女生的概率;
(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)
备用 A、B、C、D、E五人分四本不同的书,每人至多分一本,求:
(1)A不分甲书,B不分乙书的概率;
(2)甲书不分给A、B,乙书不分给C的概率。
解: (1)分别记“分不到书的是A,B不分乙书”,“分不到书的是B,A不分甲书”,“分不到书的是除A,B以外的其余的三人中的一人,同时A不分甲书,B不分乙书”为事件A1,B1,C1,它们的概率是
.
因为事件A1,B1,C1彼此互斥,由互斥事件的概率加法公式,A不分甲书,B不分乙书的概率是:
(2) 在乙书不分给C的情况下,分别记“甲书分给C”,“甲书分给D”,“甲书分给E”为事件A2,B2,C2彼此互斥,有互斥事件的概率加法公式,甲书不分给A,B,乙书不分给C的概率为:
作业
1. 将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩
具)先后抛掷3次,至少出现一次6点向上的概率是 ( )
(A) (B) (C) (D)
2. 在5张卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是( )
(A) 0.8 (B) 0.6 (C) 0.4 (D) 0.2
3. 在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判曰原来的9名增至14名,但只任取其中7名裁判的评分作为有效分,若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是 .(结果用数值表示)
4. 某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成。现从中随机
选出两位作为成果发布人,则此两人不属于同一个国家的概率为
(结果用分数表示)
5. 已知10件产品中有3件是次品.
(I)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(II)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
6. 冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.
(Ⅰ)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;
(Ⅱ)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.
例题答案
1(Ⅰ);(Ⅱ) 2(Ⅰ);(Ⅱ). 3(Ⅰ)0.228;(Ⅱ)0.564. 4(Ⅰ);(Ⅱ);(Ⅲ).
作业答案
1. D 2. B 3. 4. 5. 解:(Ⅰ) (Ⅱ)最少应抽取9件产品作检验.
6. 解:(I). (II)P6(5)+P5(5)+P4(4) =C65P5(1-P)+C55P5+C44P4=
第四课时
例题
例1 某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电
(选哪一天是等可能的).假定工厂之间的选择互不影响.
(Ⅰ)求5个工厂均选择星期日停电的概率;
(Ⅱ)求至少有两个工厂选择同一天停电的概率. (2004年浙江卷)
例2 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)分别求甲、乙两人考试合格的概率;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率. (2004年福建卷)
例3 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.
(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
(2004年湖南卷)
例4 为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下:
预防措施 甲 乙 丙 丁
P 0.9 0.8 0.7 0.6
费用(万元) 90 60 30 10
预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.(2004年湖北卷)
备用 一个医生已知某种疾病患者的痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:
(1)虽新药有效,且把痊愈率提高到35%,但通过试验被否定的概率;
(2)新药完全无效,但通过试验被认为有效的概率。
解: 记一个病人服用该药痊愈为事件 A,且其概率为P,那么10个病人服用该药相当于10次重复试验.
(1)因新药有效且P=0.35,故由n次独立重复试验中事件A发生k次的概率公式知,试验被否定(即新药无效)的概率为
(2)因新药无效,故P=0.25,试验被认为有效的概率为
答: 新药有效,但通过试验被否定的概率为0.5138;而新药无效,但通过试验被认为有效的概率为0.2242
作业
1. 从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是
(A) (B) (C) (D) ( )
2. 甲、乙两人独立地解同一题,甲解决这个问题的概率是0.4,乙解决这个问题的概率是0.5,那么其中至少有一人解决这个问题的概率是 ( )
(A)0.9 (B)0.2 (C)0.8 (D)0.7
3. 一个袋中有带标号的7个白球,3个黑球.事件A:从袋中摸出两个球,先摸的是黑球,
后摸的是白球.那么事件A发生的概率为________.
4. 口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出
5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以数值作答)
5. 张华同学骑自行车上学途中要经过4个交叉路口,在各交叉路口遇到红灯的概率都是 (假设各交叉路口遇到红灯的事件是相互独立的).
(Ⅰ)求张华同学某次上学途中恰好遇到3次红灯的概率.
(Ⅱ)求张华同学某次上学时,在途中首次遇到红灯前已经过2 个交叉路口的概率.设
6. 甲、乙、丙三人分别独立解一道题,已知甲做对这道题的概率是,甲、丙两人都做错的概率是,乙、丙两人都做对的概率是.
(Ⅰ)求乙、丙两人各自做对这道题的概率;
(Ⅱ)求甲、乙、丙三人中至少有两人做对这道题的概率.
例题答案
1.(Ⅰ); (Ⅱ). 2.(Ⅰ);(Ⅱ).
3.(Ⅰ);(Ⅱ) 4.联合采用乙、丙、丁三种预防措施
作业答案
1. C 2. D 3. 4. 5. (Ⅰ)(Ⅱ) 6. (Ⅰ),(Ⅱ)
第五课时
例题
例1 某厂生产的A产品按每盒10件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒10件A产品中任抽4件进行检验,若次品数不超过1件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒A产品中有2件次品.
(Ⅰ)求该盒产品被检验合格的概率;
(Ⅱ)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.
(2004年南京市一模)
例2 一个通信小组有两套设备,只要其中有一套设备能正常工作,就能进行通信.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内
(Ⅰ)恰有一套设备能正常工作的概率;
(Ⅱ)能进行通信的概率. (2004年南京市二模)
例3 某校田径队有三名短跑运动员,根据平时的训练情况统计,甲、乙、丙三人100m跑(互不影响)的成绩在13s内(称为合格)的概率分别是,,.如果对这3名短跑运动员的100m跑的成绩进行一次检测. 问
(Ⅰ)三人都合格的概率与三人都不合格的概率分别是多少?
(Ⅱ)出现几人合格的概率最大? (2004年南京市三模)
例4 设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.
(Ⅰ)三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标概率;(Ⅱ)若甲单独向目标射击三次,求他恰好命中两次的概率. (2004年重庆卷)
备用 若甲、乙二人进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局两胜和五局三胜制,问在哪种比赛制度下,甲获胜的可能性较大.
解: 三局两胜制的甲胜概率:
甲胜两场:,甲胜三场:,
甲胜概率为+=0.648
五局三胜制:
甲胜三场:,甲胜四场:,甲胜五场:,
甲胜概率为++=0.682
由0.648<0.682,知五局三胜制中甲获胜的可能性更大.
作业
1. 已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )
(A) (B) (C) (D)
2. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为( )
(A) (B) (C) (D)
3. 15名新生,其中有3名优秀生,现随机将他们分到三个班级中去,每班5人,则每班都分到优秀生的概率是 .
4. 如图,已知电路中3个开关闭合的概率都是0.5, 且是相互独立的,则灯亮的概率为
5. 甲、乙、丙3人一起参加公务员选拔考试,根据3 人的初试情况,预计他们被录用的概率依次为0.7、0.8、0.8. 求:
(Ⅰ)甲、乙2人中恰有1 人被录用的概率;(Ⅱ)3人中至少的2 人被录用的概率.
6. 对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.(Ⅰ)求下列事件的概率:①A:甲正好取得两只配对手套; ②B:乙正好取得两只配对手套;(Ⅱ)A与B是否独立?并证明你的结论.
例题答案
1. (Ⅰ) ; (Ⅱ) 2. (Ⅰ)(Ⅱ)
3.(Ⅰ),;(Ⅱ)1人 . 4. (Ⅰ)0.94, 0.44; (Ⅱ)0.441
作业答案
1. D 2. A 3. 4. 0.625 5. (Ⅰ) ; (Ⅱ)0.416+0.448=0.864.
6.(Ⅰ)①,②; (Ⅱ),,故A与B是不独立的.
备用课时一 随机事件的概率
例题
例1 某人有5把钥匙,但忘记了开房门的是哪一把,于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门所的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
解 5把钥匙,逐把试开有种结果,由于该人忘记了开房间的是哪一把,因此这些结果是等可能的。
(1)第三次打开房门的结果有种,故第三次打开房门锁的概率P(A)==
(2)三次内打开房门的结果有种,因此所求概率P(A)= =
(3)方法1 因5把内有2把房门钥匙,故三次内打不开的结果有种,从而三次内打开的结果有种,从而三次内打开的结果有种,所求概率P(A)= =.
方法2 三次内打开的结果包括:三次内恰有一次打开的结果种;三次内恰有两次打开的结果种.因此,三次内打开的结果有()种,所求概率P(A)=
例2 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成.
(1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?
(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少?
解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1种,其概率为,随意按下6个数字相当于随意按下个,随意按下6个数字相当于随意按下个密码之一,其概率是.
(2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为.
例3 一个口袋内有m个白球和n个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)
解 设事件I是“从m个白球和n个黑球中任选3个球”,要对应集合I1,事件A是“从m个白球中任选2个球,从n个黑球中任选一个球”,本题是等可能性事件问题,且Card(I1)= ,于是P(A)=.
例4 将一枚骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果.
(2)其中向上的数之积是12的结果有多少种?
(3)向上数之积是12的概率是多少?
解 (1)将骰子向桌面先后抛掷两次,一共有36种不同的结果.
(2)向上的数之积是12,记(I,j)为“第一次掷出结果为I,第二次掷出结果为j”则相乘为12的结果有(2,6),(3,4),(4,3),(6,2)4种情况.
(3)由于骰子是均匀的,将它向桌面先后抛掷2次的所有36种结果是等可能的,其中“向上的数之积是12”这一事件记为A.Card(A)=4.所以所求概率P(A)= =.
作业
1. 袋中有a只黑球b只白球,它们除颜色不同外,没有其它差别,现在把球随机地一只一只摸出来,求第k次摸出的球是黑球的概率.
解法一:把a只黑球和b只白球都看作是不同的,将所有的球都一一摸出来放在一直线上的a+b个位置上,把所有的不同的排法作为基本事件的全体,则全体基本事件的总数为(a+b)!,而有利事件数为a(a+b-1)!故所求概率为P=。
解法二:把a只黑球和b只白球看作是不同的,将前k次摸球的所有不同可能作为基本事件全体,总数为,有利事件为,故所求概率为P=
解法三:把只考虑k次摸出球的每一种可能作为基本事件,总数为a+b,有利事件为a,故所求概率为.
备用课时二 互斥事件有一个发生的概率
例题
例1 房间里有6个人,求至少有2个人的生日在同一月内的概率.
解 6个人生日都不在同一月内的概率P()=.故所求概率为P(A)=1-P()=1-.
例2 从一副52张的扑克牌中任取4张,求其中至少有两张牌的花色相同的概率。
解法1 任取四张牌,设至少有两张牌的花色相同为事件A;四张牌是同一花色为事件B1;有3张牌是同一花色,另一张牌是其他花色为事件B2;每两张牌是同一花色为事件B3;只有两张牌是同一花色,另两张牌分别是不同花色为事件B4,可见,B1,B2,B3,B4彼此互斥,且A=B1+B2+B3+B4。
P(B1)= , P(B2)= ,
P(B3)= , P(B4)= ,
P(A)=P(B1)+P(B2)+P(B3)+P(B4) 0.8945
解法2 设任取四长牌中至少有两张牌的花色相同为事件A,则为取出的四张牌的花色各不相同, P()=,
答:至少有两张牌花色相同的概率是0.8945
例3 在20件产品中有15件正品,5件次品,从中任取3件,求:
(1)恰有1件次品的概率;(2)至少有1件次品的概率.
解 (1)从20件产品中任取3件的取法有,其中恰有1件次品的取法为。
恰有一件次品的概率P=.
(2)法一 从20件产品中任取3件,其中恰有1件次品为事件A1,恰有2件次品为事件A2,3件全是次品为事件A3,则它们的概率
P(A1)= =,,,
而事件A1、A2、A3彼此互斥,因此3件中至少有1件次品的概率
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)= .
法二 记从20件产品中任取3件,3件全是正品为事件A,那么任取3件,至少有1件次品为,根据对立事件的概率加法公式P()=
例4 1副扑克牌有红桃、黑桃、梅花、方块4种花色,每种13张,共52张,从1副洗好的牌中任取4张,求4张中至少有3张黑桃的概率.
解 从52张牌中任取4张,有种取法.“4张中至少有3张黑桃”,可分为“恰有3张黑桃”和“4张全是黑桃”,共有种取法
注 研究至少情况时,分类要清楚。
作业
1. 在100件产品中,有95件合格品,5件次品,从中任取2件,求:
(1) 2件都是合格品的概率;
(2) 2件都是次品的概率;
(3)1件是合格品,1件是次品的概率。
解 从100件产品中任取2件的可能出现的结果数,就是从100个元素中任取2个元素的组合数,由于任意抽取,这些结果出现的可能性相等.为基本事件总数.
(1)00件产品中有95件合格品,取到2件合格品的结果数,就是从95个元素中任取2个组合数,记“任取2件都是合格品”为事件A1,那么
(2)由于在100件产品中有5件次品,取到2件次品的结果数为.记“任取2件都是次品”为事件A2,那么事件A2的概率为:
(3)记“任取2件,1件是次品,1件是合格品”为种,则事件A3的概率为:
备用课时三 相互独立事件同时发生的概率
例题
例1 猎人在距离100米处射击一野兔,其命中率为0.5,如果第一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.
解 记三次射击依次为事件A,B,C,其中,由,求得k=5000。
,命中野兔的概率为
例2 1个产品要经过2道加工程序,第一道工序的次品率为3%,第二道工序次品率为2%,求产品的次品率.
解 设“第一道工序出现次品“为事件A,“第二道工序出现次品”为事件B,“至少有一道工序出现次品”该产品就是次品,所求概率为
例3 如图,某电子器件是由三个电阻组成的回路,其中共有六个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通。每个焊接点脱落的概率均是,现在发现电路不通了,那么至少有两个焊接点脱落的概率是多少?
解:
例4 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:
(1)其中至少有一件废品的概率; (2)其中至多有一件废品的概率.
解: 设事件A为“从甲机床抽得的一件是废品”;B为“从乙机床抽得的一件是废品”.
则P(A)=0.05, P(B)=0.1,
(1)至少有一件废品的概率
(2)至多有一件废品的概率
作业
1. 假设每一架飞机引擎飞机中故障率为P,且个引擎是否发生故障是独立的,如果有至少50%的引擎能正常运行,问对于多大的P而言,4引擎飞机比2引擎飞机更安全?
解 飞机成功飞行的概率:
4引擎飞机为:
2引擎飞机为:
要使4引擎飞机比2引擎飞机更安全,只要
所以
C
D
B
A
M福建省邵武第一中学 guanyoyo@
第14讲 解析几何问题的题型与方法
一、知识整合
高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二、近几年高考试题知识点分析
2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.
1.选择、填空题
1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
例1 (04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2(04辽宁)已知点、,动点P满足. 当点P的纵坐标是时,点P到坐标原点的距离是
(A) (B) (C) (D)2
1.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查
例3(04天津文)若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是
(A) (B)
(C) (D)
2.解答题
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
例4(04江苏)已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M. 若,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.
解:(I)设所求椭圆方程是
由已知,得 所以.
故所求的椭圆方程是
(II)设Q(),直线
当由定比分点坐标公式,得
.
于是 故直线l的斜率是0,.
例5(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得 (1-a2)x2+2a2x-2a2=0. ①
双曲线的离心率
(II)设
由于x1,x2都是方程①的根,且1-a2≠0,
例6(04全国文科Ⅱ)给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点.
(Ⅰ)设的斜率为1,求夹角的大小;
(Ⅱ)设,求在轴上截距的变化范围.
解:(Ⅰ)C的焦点为F(1,0),直线l的斜率为1,所以l的方程为
将代入方程,并整理得
设则有
所以夹角的大小为
(Ⅱ)由题设 得
即
由②得, ∵ ∴③
联立①、③解得,依题意有
∴又F(1,0),得直线l方程为
当时,l在方程y轴上的截距为
由 可知在[4,9]上是递减的,
∴
直线l在y轴上截距的变化范围为
从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.
三、热点分析与2005年高考预测
1.重视与向量的综合
在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.
例7(02年新课程卷)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中、∈R,且+=1,则点C的轨迹方程为
(A)(x-1)2+(y-2)2=5 (B)3x+2y-11=0
(C)2x-y=0 (D)x+2y-5=0
例8(04辽宁)已知点、,动点,则点P的轨迹是
(A)圆 (B)椭圆 (C)双曲线 (D)抛物线
2.考查直线与圆锥曲线的位置关系几率较高
在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.
3.与数列相综合
在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.
例9(04年浙江卷)如图,ΔOBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),
(Ⅰ)求及;
(Ⅱ)证明
(Ⅲ)若记证明是等比数列.
解:(Ⅰ)因为,所以,又由题意可知,
∴== ∴为常数列.∴
(Ⅱ)将等式两边除以2,得
又∵,∴
(Ⅲ)∵
又∵
∴是公比为的等比数列.
4.与导数相综合
近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.
例10(04年湖南文理科试题)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。
(I)设点P分有向线段所成的比为,证明:
(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得 ①
设A、B两点的坐标分别是 、、x2是方程①的两根.
所以
由点P(0,m)分有向线段所成的比为,得
又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而.
所以
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
由 得 所以抛物线 在点A处切线的斜率为
设圆C的方程是则
解之得
所以圆C的方程是 即
5.重视应用
在历年的高考试题中,经常出现解析几何的应用题,如01年的天津理科试题、03年的上海文理科试题、03年全国文科旧课程卷试题、03年的广东试题及江苏的线性规划题等,都是有关解析几何的应用题.
例11(04年广东试题)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)
解:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020)
设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|- |PA|=340×4=1360
由双曲线定义知P点在以A、B为焦点的双曲线上,
依题意得a=680, c=1020,
用y=-x代入上式,得,∵|PB|>|PA|,
答:巨响发生在接报中心的西偏北450距中心处.
(二)05年高考预测
1.难度:解析几何内容是历年来高考数学试题中能够拉开成绩差距的内容之一,该部分试题往往有一定的难度和区分度,预计这一形式仍将在05年的试题中得到体现.此外,从04年分省(市)命题的情况来看,在文科类15份试卷(含文理合用的试卷)中,有9分试卷(占3/5)用解析几何大题作为最后一道压轴题,预计这一现状很有可能在05年试卷中继续重现.
2.命题内容:从今年各地的试题以及前几年的试题来看,解答题所考查的内容基本上是椭圆、双曲线、抛物线交替出现的,所以,今年极有可能考双曲线的解答题.此外,从命题所追求的目标来看,小题所涉及的内容一定会注意到知识的覆盖,兼顾到对能力的要求.
3.命题的热点:
(1)与其他知识进行综合,在知识网络的交汇处设计试题(如与向量综合,与数列综合、与函数、导数及不等式综合等);
(2)直线与圆锥曲线的位置关系,由于该部分内容体现解析几何的基本思想方法——用代数的手段研究几何问题,因此该部分内容一直是考试的热点,相信,在05年的考试中将继续体现;
(3)求轨迹方程.
(4)应用题.
四、二轮复习建议
1.根据学生的实际,有针对性地进行复习,提高复习的有效性
由于解析几何通常有2-3小题和1大题,约占28分左右,而小题以考查基础为主、解答题的第一问也较容易,因此,对于全市的所有不同类型的学校,都要做好该专题的复习,千万不能认为该部分内容较难而放弃对该部分内容的专题复习,并且根据生源状况有针对性地进行复习,提高复习的有效性.
2.重视通性通法,加强解题指导,提高解题能力
在二轮复习中,不能仅仅复习概念和性质,还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体,在二轮复习中强化各类问题的常规解法,使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程,解题能力只有通过学生的自主探究才能掌握.所以,在二轮复习中,教师的作用是对学生的解题方法进行引导、点拨和点评,只有这样,才能够实施有效复习.
3.注意强化思维的严谨性,力求规范解题,尽可能少丢分
在解解析几何的大题时,有不少学生常出现因解题不够规范而丢分的现象,因此,要通过平时的讲评对易出现错误的相关步骤作必要的强调,减少或避免无畏的丢分.
例14(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得
(1-a2)x2+2a2x-2a2=0. ①
双曲线的离心率
还有,在设直线方程为点斜式时,就应该注意到直线斜率不存在的情形;又如,在求轨迹方程时,还要注意到纯粹性和完备性等.
五、参考例题
例1、若直线mx+y+2=0与线段AB有交点,其中A(-2, 3),B(3,2),求实数m的取值范围。
解:直线mx+y+2=0过一定点C(0, -2),直线mx+y+2=0实际上表示的是过定点(0, -2)的直线系,因为直线与线段AB有交点,则直线只能落在∠ABC的内部,设BC、CA这两条直线的斜率分别为k1、k2,则由斜率的定义可知,直线mx+y+2=0的斜率k应满足k≥k1或k≤k2, ∵A(-2, 3) B(3, 2)
∴
∴-m≥或-m≤ 即m≤或m≥
说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx+y+2=0的斜率-m应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB内部变化时,k应大于或等于kBC,或者k小于或等于kAC,当A、B两点的坐标变化时,也要能求出m的范围。
例2、已知x、y满足约束条件
x≥1,
x-3y≤-4,
3x+5y≤30,
求目标函数z=2x-y的最大值和最小值.
解:根据x、y满足的约束条件作出可行域,即如图所示的阴影部分(包括边界).
作直线:2x-y=0,再作一组平行于的直线:2x-y=t,t∈R.
可知,当在的右下方时,直线上的点(x,y)满足2x-y>0,即t>0,而且直线往右平移时,t随之增大.当直线平移至的位置时,直线经过可行域上的点B,此时所对应的t最大;当在的左上方时,直线上的点(x,y)满足2x-y<0,即t<0,而且直线往左平移时,t随之减小.当直线平移至的位置时,直线经过可行域上的点C,此时所对应的t最小.
x-3y+4=0,
由 解得点B的坐标为(5,3);
3x+5y-30=0,
x=1,
由 解得点C的坐标为(1,).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.
例3、 已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.
解:(1)由,可得由射影定理,得 在Rt△MOQ中,
,
故,
所以直线AB方程是
(2)连接MB,MQ,设由
点M,P,Q在一直线上,得
由射影定理得
即 把(*)及(**)消去a,
并注意到,可得
说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例4、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得 .
设的中点是,则
即
故所求k=±.
说明:为了求出的值, 需要通过消元, 想法设法建构的方程.
例5、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围;
解:(1)∵,∴。
∵是共线向量,∴,∴b=c,故。
(2)设
当且仅当时,cosθ=0,∴θ。
说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。
①
②
PAGE
8福建省邵武第一中学 guanyoyo@
第6讲 分类讨论思想在解题中的应用
一、知识整合
1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
5.含参数问题的分类讨论是常见题型。
6.注意简化或避免分类讨论。
二、例题分析
例1.一条直线过点(5,2),且在x轴,y轴上截距相等,则这直线方程为( )
A. B.
C. D.
分析:设该直线在x轴,y轴上的截距均为a,
当a=0时,直线过原点,此时直线方程为;
当时,设直线方程为,方程为。
例2.
分析:
因此,只要根据已知条件,求出cosA,sinB即可得cosC的值。但是由sinA求cosA时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分类讨论。对角A进行分类。
解:
这与三角形的内角和为180°相矛盾。
例3.已知圆x2+y2=4,求经过点P(2,4),且与圆相切的直线方程。
分析:容易想到设出直线的点斜式方程y-4=k(x-2)再利用直线与圆相切的充要条件:“圆心到切线的距离等于圆的半径”,待定斜率k,从而得到所求直线方程,但要注意到:过点P的直线中,有斜率不存在的情形,这种情形的直线是否也满足题意呢?因此本题对过点P的直线分两种情形:(1)斜率存在时,…(2)斜率不存在…
解(略):所求直线方程为3x-4y+10=0或x=2
例4.
分析:解对数不等式时,需要利用对数函数的单调性,把不等式转化为不含对数符号的不等式。而对数函数的单调性因底数a的取值不同而不同,故需对a进行分类讨论。
解:
例5.
分析:解无理不等式,需要将两边平方后去根号,以化为有理不等式,而根据不等式的性质可知,只有在不等式两边同时为正时,才不改变不等号方向,因此应根据运算需求分类讨论,对x分类。
解:
例6.
分析:这是一个含参数a的不等式,一定是二次不等式吗?不一定,故首先对二次项系数a分类:(1)a≠0(2)a=0,对于(2),不等式易解;对于(1),又需再次分类:a>0或a<0,因为这两种情形下,不等式解集形式是不同的;不等式的解是在两根之外,还是在两根之间。而确定这一点之后,又会遇到1与谁大谁小的问题,因而又需作一次分类讨论。故而解题时,需要作三级分类。
解:
综上所述,得原不等式的解集为
;;
;;
。
例7.已知等比数列的前n项之和为,前n+1项之和为,公比q>0,令。
分析:对于等比数列的前n项和Sn的计算,需根据q是否为1分为两种情形:
故还需对q再次分类讨论。
解:
例8.
分析:
解:(1)当k=4时,方程变为4x2=0,即x=0,表示直线;
(2)当k=8时,方程变为4y2=0,即y=0,表示直线;
(i)当k<4时,方程表示双曲线;(ii)当4
(iii)当k=6时,方程表示圆;(iv)当6
(v)当k>8时,方程表示双曲线。
例9. 某车间有10名工人,其中4人仅会车工,3人仅会钳工,另外三人车工钳工都会,现需选出6人完成一件工作,需要车工,钳工各3人,问有多少种选派方案?
分析:如果先考虑钳工,因有6人会钳工,故有C63种选法,但此时不清楚选出的钳工中有几个是车钳工都会的,因此也不清楚余下的七人中有多少人会车工,因此在选车工时,就无法确定是从7人中选,还是从六人、五人或四人中选。同样,如果先考虑车工也会遇到同样的问题。因此需对全能工人进行分类:
(1)选出的6人中不含全能工人;(2)选出的6人中含有一名全能工人;(3)选出的6人中含2名全能工人;(4)选出的6人中含有3名全能工人。
解:
三、总结提炼
分类讨论是一种重要的数学思想方法,是一种数学解题策略,对于何时需要分类讨论,则要视具体问题而定,并无死的规定。但可以在解题时不断地总结经验。
如果对于某个研究对象,若不对其分类就不能说清楚,则应分类讨论,另外,数学中的一些结论,公式、方法对于一般情形是正确的,但对某些特殊情形或说较为隐蔽的“个别”情况未必成立。这也是造成分类讨论的原因,因此在解题时,应注意挖掘这些个别情形进行分类讨论。常见的“个别”情形略举以下几例:
(1)“方程有实数解”转化为时忽略了了个别情形:当a=0时,方程有解不能转化为△≥0;
(2)等比数列的前项和公式中有个别情形:时,公式不再成立,而是Sn=na1。
设直线方程时,一般可设直线的斜率为k,但有个别情形:当直线与x轴垂直时,直线无斜率,应另行考虑。
(4)若直线在两轴上的截距相等,常常设直线方程为,但有个别情形:a=0时,再不能如此设,应另行考虑。
四、强化练习:见优化设计。
【模拟试题】
一. 选择题:
1. 若的大小关系为( )
A. B.
C. D. ;
2. 若,且,则实数中的取值范围是( )
A. B.
C. D.
3. 设A=( )
A. 1 B. C. D.
4. 设的值为( )
A. 1 B. 0 C. 7 D. 0或7
5. 一条直线过点(5,2),且在x轴,y轴上截距相等,则这直线方程为( )
A.
B.
C.
D.
6. 若( )
A. 1 B. C. D. 不能确定
7. 已知圆锥的母线为l,轴截面顶角为,则过此圆锥的顶点的截面面积的最大值为( )
A. B.
C. D. 以上均不对
8. 函数的图象与x轴的交点至少有一个在原点的右侧,则实数m的取值范围为( )
A. B.
C. D.
二. 填空题
9. 若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是______________。
10. 若,则a的取值范围为________________。
11. 与圆相切,且在两坐标轴上截距相等的直线方程为____________。
12. 在50件产品中有4件是次品,从中任抽取5件,至少有3件次品的抽法共有______________种(用数字作答)
13. 不等式的解集为_____________。
三. 解答题:
14. 已知椭圆的中心在原点,集点在坐标轴上,焦距为,另一双曲线与此椭圆有公共焦点,且其实轴比椭圆的长轴小8,两曲线的离心率之比为3:7,求此椭圆、双曲线的方程。
15. 设a>0且,试求使方程有解的k的取值范围。
【试题答案】
一. 选择题
1. C 2. D 3. D 4. D 5. C 6. A 7. D 8. B
提示:1. 欲比较p、q的大小,只需先比较的大小,再利用对数函数的单调性。而决定的大小的a值的分界点为使
的a值:a=1,
当a>1时,此时
当即。
可见,不论a>1还是0
q。
2. 若,即
若
可见当都有,故选(D)
3. 若
若,则,
4. 由是1的7次方根,可得显然,1是1的7次方根,故可能;若,则
故选(D)
5. 设该直线在x轴,y轴上的截距均为a,
当a=0时,直线过原点,此时直线方程为;
当时,设直线方程为,方程为
6. 由
于是总有,故选(A)
7. 当时,最大截面就是轴截面,其面积为;
当时,最大截面是两母线夹角为的截面,其面积为
可见,最大截面积为,故选(D)
8. 当时,满足题意
综上可知,
故选(B)
二. 填空题
9.
(提示:若长为4的边作为圆柱底面圆周的展开图,,则;若长为2的边作为圆柱底面圆周的展开图,则)
10.
(提示:对a分:两种情况讨论)
11.
(提示:分截距相等均不为0与截距相等均为0两种情形)
12. 4186种
(提示:对抽取5件产品中的次品分类讨论:(1)抽取的5件产品中恰好有3件次品;(2)抽取的5件产品中恰好有4件次品,于是列式如下:=4140+46
=4186)
13. 若,则解集为
若,则解集为
(提示:设
解之得
对a分类:时,
)
三. 解答题
14. 解:(1)若椭圆与双曲线的焦点在x轴上,可设它们方程分别为
,依题意
(2)若焦点在y轴上,则可设椭圆方程为
双曲线方程为,依题意有
15. 解:原方程可化为
令
则对原方程的解的研究,可转化为对函数图象的交点的研究
下图画出了的图象,由图象可看出
y
g(x) f(x)
g(x)
a
A1 A2 x
-a O a
-a
(1)当直线时,与双曲线无交点,此时即当时,原方程无解;
(2)当直线图象与双曲线渐近线重合,显然直线与双曲线无交点,即当k=0时,原方程无解;
(3)当直线的纵截距满足,即
时,直线与双曲线总有交点,原方程有解。
综上所述,当
PAGE
12第18讲 平面向量与解析几何
在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。
一、知识整合
平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。
二、例题解析
例1、(2000年全国高考题)椭圆的焦点为FF,点P为其上的动点,当∠FP F为钝角时,点P横坐标的取值范围是___。
解:F1(-,0)F2(,0),设P(3cos,2sin)
为钝角
∴
=9cos2-5+4sin2=5 cos2-1<0
解得: ∴点P横坐标的取值范围是()
点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。
例2、已知定点A(-1,0)和B(1,0),P是圆(x-3)2+(y-4)2=4上的一动点,求的最大值和最小值。
分析:因为O为AB的中点,所以故可利用向量把问题转化为求向量的最值。
解:设已知圆的圆心为C,由已知可得:
又由中点公式得
所以
=
=
=
又因为 点P在圆(x-3)2+(y-4)2=4上,
所以 且
所以
即 故
所以的最大值为100,最小值为20。
点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。
例3、(2003年天津高考题)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,,则P的轨迹一定通过△ABC的( )
(A)外心 (B)内心 (C)重心 (D)垂心
分析:因为同向的单位向量,由向量加法的平行四边形则知是与∠ABC的角平分线(射线)同向的一个向量,又,知P点的轨迹是∠ABC的角平分线,从而点P的轨迹一定通过△ABC的内心。
反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;
(1) 由顶点坐标(含线段端点)或直线方程求得角两边的方向向量;
(2) 求出角平分线的方向向量
(3) 由点斜式或点向式得出角平分线方程。{直线的点向式方程:过P(),其方向向量为,其方程为}
例4、(2003年天津)已知常数,向量,经过原点以为方向向量的直线与经过定点以为方向向量的直线相交于点,其中.试问:是否存在两个定点,使得为定值,若存在,求出的坐标;若不存在,说明理由.
(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.
∵, ∴=(λ,a),=(1,-2λa).
因此,直线OP和AP的方程分别为 和 .
消去参数λ,得点的坐标满足方程.
整理得 ……① 因为所以得:
(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;
(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;
(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.
点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。去掉平面向量的背景,我们不难看到,本题即为下题:
在△OAP中,O(0,0)、A(0,a)为两个定点,另两边OP与AP的斜率分别是,求P的轨迹。
而课本上有一道习题(数学第二册(上)第96页练习题4):
三角形ABC的两个顶点A、B的坐标分别是(-6,0)、(6,0),边AC、BC所在直线的斜率之积等于,求顶点C的轨迹方程。通过本例可见高考题目与课本的密切关系。
例5.(2004年天津卷理22)椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若,求直线PQ的方程;
(3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明.
分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.
(1)解:由题意,可设椭圆的方程为.
由已知得解得
所以椭圆的方程为,离心率.
(2)解:由(1)可得A(3,0).
设直线PQ的方程为.由方程组
得
依题意,得.
设,则, ① . ②
由直线PQ的方程得.于是
. ③
∵,∴. ④
由①②③④得,从而.
所以直线PQ的方程为或
(2)证明:.由已知得方程组
注意,解得
因,故
.
而,所以.
三、总结提炼
由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。
P
C
y
x
A
o
B
PAGE
5福建省邵武第一中学 guanyoyo@
第3讲 应用问题的题型与方法
数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是能阅读、理解陈述的材料,深刻理解题意,学会文字语言向数学的符号语言的翻译转化,能结合应用所学数学知识、思想方法解决问题,包括解决带有实际意义的或者相关学科、生产、生活中的数学问题,并能用数学语言正确的加以表述.考生的弱点主要表现在将实际问题转化成数学问题的能力上.实际问题转化为数学问题,关键是提高阅读能力即数学审题能力,审出函数、方程、不等式、等式,要求我们读懂材料,辨析文字叙述所反应的实际背景,领悟从背景中概括出来的数学实质,抽象其中的数量关系,将文字语言叙述转译成数学式符号语言,建立对应的数学模型解答.可以说,解答一个应用题重点要过三关:一是事理关,即读懂题意,需要一定的阅读理解能力;二是文理关,即把文字语言转化为数学的符号语言;三是数理关,即构建相应的数学模型,构建之后还需要扎实的基础知识和较强的数理能力.
由于数学问题的广泛性,实际问题的复杂性,干扰因素的多元性,更由于实际问题的专一性,这些都给学生能读懂题目提供的条件和要求,在陌生的情景中找出本质的内容,转化为函数、方程、不等式、数列、排列、组合、概率、曲线、解三角形等问题.
一、知识整合
1.“考试大纲”对于“解决实际问题的能力”的界定是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括提炼、解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述.并且指出:对数学应用问题,要把握好提出问题所涉及的数学知识和方法的深度和广度,切合中学数学教学实际.
2.应用问题的“考试要求”是考查考生的应用意识和运用数学知识与方法来分析问题解决问题的能力,这个要求分解为三个要点:
(1)、要求考生关心国家大事,了解信息社会,讲究联系实际,重视数学在生产、生活及科学中的应用,明确“数学有用,要用数学”,并积累处理实际问题的经验.
(2)、考查理解语言的能力,要求考生能够从普通语言中捕捉信息,将普通语言转化为数学语言,以数学语言为工具进行数学思维与交流.
(3)、考查建立数学模型的初步能力,并能运用“考试大纲”所规定的数学知识和方法来求解.
3.求解应用题的一般步骤是(四步法):
(1)、读题:读懂和深刻理解,译为数学语言,找出主要关系;
(2)、建模:把主要关系近似化、形式化,抽象成数学问题;
(3)、求解:化归为常规问题,选择合适的数学方法求解;
(4)、评价:对结果进行验证或评估,对错误加以调节,最后将结果应用于现实,作出解释或验证.
4.在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等.
Ⅰ.函数模型 函数是中学数学中最重要的一部分内容,现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决.
⑴ 根据题意,熟练地建立函数模型;
⑵ 运用函数性质、不等式等知识处理所得的函数模型.
Ⅱ.几何模型 诸如航行、建桥、测量、人造卫星等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.
Ⅲ.数列模型 在经济活动中,诸如增长率、降低率、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题一是看自变量是否与正整数有关;二是看是否符合一定的规律,可先从特殊的情形入手,再寻找一般的规律.
二、例题分析
例1.(1996年全国高考题)某地现有耕地10000公顷,规划10年后粮食单产比现有增加22%,人均粮食产量比现在提高10%,如果人口年增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷)?
(粮食单产= ; 人均粮食产量=)
分析:此题以关系国计民生的耕地、人口、粮食为背景,给出两组数据,要求考生从两条线索抽象数列模型,然后进行比较与决策.
解:1.读题:问题涉及耕地面积、粮食单产、人均粮食占有量、总人口数及三个百分率,其中人均粮食占有量P=, 主要关系是:P≥P .
2.建模:设耕地面积平均每年至多减少x公顷,现在粮食单产为a吨/公顷,现在人口数为m,则现在占有量为,10年后粮食单产为a(1+0.22),人口数为m(1+0.01),耕地面积为(10-10x).
∴ ≥(1+0.1)
即 1.22(10-10x)≥1.1×10×(1+0.01)
3.求解: x≤10-×10×(1+0.01)
∵ (1+0.01)=1+C×0.01+C×0.01+C×0.01+…≈1.1046
∴ x≤10-995.9≈4(公顷)
4.评价:答案x≤4公顷符合控制耕地减少的国情,又验算无误,故可作答.(答略)
另解:1.读题:粮食总产量=单产×耕地面积; 粮食总占有量=人均占有量×总人口数;
而主要关系是:粮食总产量≥粮食总占有量
2.建模:设耕地面积平均每年至多减少x公顷,现在粮食单产为a吨/公顷,现在人口数为m,则现在占有量为,10年后粮食单产为a(1+0.22),人口数为m(1+0.01),耕地面积为(10-10x).
∴ a(1+0.22)×(1O-10x)≥×(1+0.1)×m(1+0.01)
3.求解: x≤10-×10×(1+0.01)
∵ (1+0.01)=1+C×0.01+C×0.01+C×0.01+…≈1.1046
∴ x≤10-995.9≈4(公顷)
4.评价:答案x≤4公顷符合控制耕地减少的国情,又验算无误,故可作答.(答略)
说明:本题主要是抓住各量之间的关系,注重3个百分率.其中耕地面积为等差数列,总人口数为等比数列模型,问题用不等式模型求解.本题两种解法,虽都是建立不等式模型,但建立时所用的意义不同,这要求灵活掌握,还要求对指数函数、不等式、增长率、二项式定理应用于近似计算等知识熟练.此种解法可以解决有关统筹安排、最佳决策、最优化等问题.此种题型属于不等式模型,也可以把它作为数列模型,相比之下,主要求解过程是建立不等式模型后解出不等式.
在解答应用问题时,我们强调“评价”这一步不可少!它是解题者的自我调节,比如本题求解过程中若令1.01≈1,算得结果为x≤98公顷,自然会问:耕地减少这么多,符合国家保持耕地的政策吗?于是进行调控,检查发现是错在1.01的近似计算上.
A
M C D B
例2.(1991年上海高考题)已知某市1990年底人口为100万,人均住房面积为5m,如果该市每年人口平均增长率为2%,每年平均新建住房面积为10万m,试求到2000年底该市人均住房面积(精确到0.01)?
分析:城市每年人口数成等比数列,每年住房总面积成等比数列,分别写出2000年后的人口数、住房总面积,从而计算人均住房面积.
解:1.读题:主要关系:人均住房面积=
2.建模:2000年底人均住房面积为
3.求解:化简上式=,
∵ 1.02=1+C×0.02+C×0.02+C×0.02+…≈1.219
∴ 人均住房面积为≈4.92
4.评价:答案4.92符合城市实际情况,验算正确,所以到2000年底该市人均住房面积为4.92m.
说明:一般地,涉及到利率、产量、降价、繁殖等与增长率有关的实际问题,可通过观察、分析、归纳出数据成等差数列还是等比数列,然后用两个基础数列的知识进行解答.此种题型属于应用问题中的数列模型.
例3.如图,一载着重危病人的火车从O地出发,沿射线OA行驶,其中
在距离O地5a(a为正数)公里北偏东β角的N处住有一位医学专家,其中
sinβ= 现有110指挥部紧急征调离O地正东p公里的B处的救护车赶往N处载上医学专家全速追赶乘有重危病人的火车,并在C处相遇,经测算当两车行驶的路线与OB围成的三角形OBC面积S最小时,抢救最及时.
(1)求S关于p的函数关系;
(2)当p为何值时,抢救最及时.
解:(1)以O为原点,正北方向为y轴建立直角坐标系,
则
设N(x0,y0),
又B(p,0),∴直线BC的方程为:
由得C的纵坐标
,∴
(2)由(1)得 ∴,∴当且仅当时,上式取等号,∴当公里时,抢救最及时.
例4.(1997年全国高考题)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 v(千米/时)的平方成正比,比例系数为b;固定部分为a元.
① 把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出函数的定义域;
② 为了使全程运输成本最小,汽车应以多大速度行驶?
分析:几个变量(运输成本、速度、固定部分)有相互的关联,抽象出其中的函数关系,并求函数的最小值.
解:(读题)由主要关系:运输总成本=每小时运输成本×时间,
(建模)有y=(a+bv)
(解题)所以全程运输成本y(元)表示为速度v(千米/时)的函数关系式是:
y=S(+bv),其中函数的定义域是v∈(0,c] .
整理函数有y=S(+bv)=S(v+),
由函数y=x+ (k>0)的单调性而得:
当
当≥c时,则v=c时,y取最小值.
综上所述,为使全程成本y最小,当
说明:1.对于实际应用问题,可以通过建立目标函数,然后运用解(证)不等式的方法求出函数的最大值或最小值,其中要特别注意蕴涵的制约关系,如本题中速度v的范围,一旦忽视,将出现解答不完整.此种应用问题既属于函数模型,也可属于不等式模型.
2.二次函数、指数函数以及函数(a>0,b>0)的性质要熟练掌握.
3.要能熟练地处理分段函数问题.
例5.(2003年普通高等学校招生全国统一考试(理工农医类20))
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大. 问几小时后该城市开始受到台风的侵袭?
解:如图建立坐标系以O为原点,正东方向为x轴正向.
在时刻:(1)台风中心P()的坐标为
此时台风侵袭的区域是
其中若在t时刻城市O受到台风
的侵袭,则有
即
答:12小时后该城市开始受到台风的侵袭.
例6.已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
甲 乙 丙
维生素A(单位/千克) 600 700 400
维生素B(单位/千克) 800 400 500
成本(元/千克) 11 9 4
(1)用x,y表示混合食物成本c元;
(2)确定x,y,z的值,使成本最低.
解:(1)依题意得 .
(2)由 , 得
,
当且仅当时等号成立.,
∴当x=50千克,y=20千克,z=30千克时,混合物成本最低为850元.
说明:线性规划是高中数学的新增内容, 涉及此类问题的求解还可利用图解法.
例7.(2003年普通高等学校招生全国统一考试(北京卷文史类19))
有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)
(Ⅰ)若希望点P到三镇距离的平方和为最小,
点P应位于何处?
(Ⅱ)若希望点P到三镇的最远距离为最小,
点P应位于何处?
分析:本小题主要考查函数,不等式等基本知识,
考查运用数学知识分析问题和解决问题的能力.
(Ⅰ)解:设P的坐标为(0,),则P至三
镇距离的平方和为
所以,当时,函数取得最小值. 答:点P的坐标是
(Ⅱ)解法一:P至三镇的最远距离为
由解得记于是
因为在[上是增函数,而上是减函数. 所以时,函数取得最小值. 答:点P的坐标是
解法二:P至三镇的最远距离为
由解得记于是
函数的图象如图,因此,
当时,函数取得最小值.答:点P的坐标是
解法三:因为在△ABC中,AB=AC=13,且,
所以△ABC的外心M在线段AO上,其坐标为,
且AM=BM=CM. 当P在射线MA上,记P为P1;当P在射线
MA的反向延长线上,记P为P2,
这时P到A、B、C三点的最远距离为
P1C和P2A,且P1C≥MC,P2A≥MA,所以点P与外心M
重合时,P到三镇的最远距离最小.
答:点P的坐标是
例7.(2003年普通高等学校招生全国统一考试(天津卷理工农医类20))
A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1,A2,A3,B
队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下:
对阵队员 A队队员胜的概率 A队队员负的概率
A1对B1
A2对B2
A3对B3
现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为ξ、η
(1)求ξ、η的概率分布;
(2)求Eξ,Eη.
分析:本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.
解:(1)ξ、η的可能取值分别为3,2,1,0.
,
根据题意知ξ+η=3,所以 P(η=0)=P(ξ=3)=, P(η=1)=P(ξ=2)=
P(η=2)=P(ξ=1)= , P(η=3)=P(ξ=0)= .
(2); 因为ξ+η=3,所以
例8.(2004年湖北卷)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一
旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)
解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);
②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为
1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元)
③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,
损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);
④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概
率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).
综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费
用最少.
例9.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆
解:设2001年末汽车保有量为万辆,以后各年末汽车保有量依次为万辆,万辆,……,每年新增汽车万辆,则
,
所以,当时,,两式相减得:
(1)显然,若,则,即,此时
(2)若,则数列为以为首项,以为公比的等比数列,所以,.
(i)若,则对于任意正整数,均有,所以,,此时,
(ii)当时,,则对于任意正整数,均有,所以,,
由,得
,
要使对于任意正整数,均有恒成立,
即
对于任意正整数恒成立,解这个关于x的一元一次不等式 , 得
,
上式恒成立的条件为:,由于关于的函数单调递减,所以,.
说明:本题是2002年全国高考题,上面的解法不同于参考答案,其关键是化归为含参数的不等式恒成立问题,其分离变量后又转化为函数的最值问题.
例10.(2004年重庆卷)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
解:每月生产x吨时的利润为
,故它就是最大值点,且最大值为:
答:每月生产200吨产品时利润达到最大,最大利润为315万元.
PAGE
1福建省邵武第一中学 guanyoyo@
第12讲 三角函数
高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
一、知识整合
1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.
2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.
2、 高考考点分析
2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次:
第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。
三、方法技巧
1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=-等。
(3)降次与升次。(4)化弦(切)法。
(4)引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析
例1.已知,求(1);(2)的值.
解:(1);
(2)
.
说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
例2.求函数的值域。
解:设,则原函数可化为
,因为,所以
当时,,当时,,
所以,函数的值域为。
例3.已知函数。
(1)求的最小正周期、的最大值及此时x的集合;
(2)证明:函数的图像关于直线对称。
解:
(1)所以的最小正周期,因为,
所以,当,即时,最大值为;
(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,
因为,
,
所以成立,从而函数的图像关于直线对称。
例4. 已知函数y=cos2x+sinx·cosx+1 (x∈R),
(1)当函数y取得最大值时,求自变量x的集合;
(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(1)y=cos2x+sinx·cosx+1= (2cos2x-1)+ +(2sinx·cosx)+1
=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+
=sin(2x+)+
所以y取最大值时,只需2x+=+2kπ,(k∈Z),即 x=+kπ,(k∈Z)。
所以当函数y取最大值时,自变量x的集合为{x|x=+kπ,k∈Z}
(2)将函数y=sinx依次进行如下变换:
(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;
(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;
(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像;
(iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。
综上得到y=cos2x+sinxcosx+1的图像。
说明:本题是2000年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。这类题一般有两种解法:一是化成关于sinx,cosx的齐次式,降幂后最终化成y=sin (ωx+)+k的形式,二是化成某一个三角函数的二次三项式。本题(1)还可以解法如下:当cosx=0时,y=1;当cosx≠0时,y=+1=+1
化简得:2(y-1)tan2x-tanx+2y-3=0
∵tanx∈R,∴△=3-8(y-1)(2y-3) ≥0,解之得:≤y≤
∴ymax=,此时对应自变量x的值集为{x|x=kπ+,k∈Z}
例5.已知函数
(Ⅰ)将f(x)写成的形式,并求其图象对称中心的横坐标;
(Ⅱ)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.
解:
(Ⅰ)由=0即
即对称中心的横坐标为
(Ⅱ)由已知b2=ac
即的值域为.
综上所述, , 值域为 .
说明:本题综合运用了三角函数、余弦定理、基本不等式等知识,还需要利用数形结合的思想来解决函数值域的问题,有利于培养学生的运算能力,对知识进行整合的能力。
例6.在中,a、b、c分别是角A、B、C的对边,且,
(1)求的值;
(2)若,且a=c,求的面积。
解:(1)由正弦定理及,有,
即,所以,
又因为,,所以,因为,所以,又,所以。
(2)在中,由余弦定理可得,又,
所以有,所以的面积为
。
例7.已知向量
,且,
(1)求函数的表达式;
(2)若,求的最大值与最小值。
解:(1),,,又,
所以,
所以,即;
(2)由(1)可得,令导数,解得,列表如下:
t -1 (-1,1) 1 (1,3)
导数 0 - 0 +
极大值 递减 极小值 递增
而所以。
例8.已知向量,
(1) 求的值;
(2) (2)若的值。
解:(1)因为
所以
又因为,所以,
即;
(2) ,
又因为,所以 ,
,所以,所以
例9.平面直角坐标系有点
(1) 求向量和的夹角的余弦用表示的函数;
(2) 求的最值.
解:(1),
即
(2) , 又 ,
, , .
说明:三角函数与向量之间的联系很紧密,解题时要时刻注意。
PAGE
6福建省邵武第一中学 guanyoyo@
第13讲 立体几何
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.
一、知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.
2. 判定两个平面平行的方法:
(1)根据定义——证明两平面没有公共点;
(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那
么它们的交线平行”。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,],直线与平面所成的角θ∈,二面角的大小,可用它们的平面角来度量,其平面角θ∈0,π.
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.
如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l-的平面角(记作)通常有以下几种方法:
(1) 根据定义;
(2) 过棱l上任一点O作棱l的垂面,设∩=OA,∩=OB,则∠AOB= ;
(3) 利用三垂线定理或逆定理,过一个半平面内一点A,分别作另一个平面的垂线AB(垂足为B),或棱l的垂线AC(垂足为C),连结AC,则∠ACB= 或∠ACB=-;
(4) 设A为平面外任一点,AB⊥,垂足为B,AC⊥,垂足为C,则∠BAC=或∠BAC=-;
(5) 利用面积射影定理,设平面内的平面图形F的面积为S,F在平面内的射影图形的面积为S,则cos=.
5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.
求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.
6.棱柱的概念和性质
⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。
⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体 直平行六面体 长方体 正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。
⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。
⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。
⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.
7.经纬度及球面距离
⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O的地轴为NS,圆O是0°纬线,半圆NAS是0°经线,若某地P是在东经120°,北纬40°,我们可以作出过P的经线NPS交赤道于B,过P的纬线圈圆O1交NAS于A,那么则应有:∠AO1P=120°(二面角的平面角) ,∠POB=40°(线面角)。
⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。
例如,可以循着如下的程序求A、P两点的球面距离。
线段AP的长 ∠AOP的弧度数 大圆劣弧AP的长
8.球的表面积及体积公式
S球表=4πR2 V球=πR3
⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n个小三棱锥的体积=Snhn(Sn为该小三棱锥的底面积,hn为小三棱锥高),所以V球=S球面·R=·4πR2·R=πR3.
⑵球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。
二、注意事项
1. 须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。
2.三种空间角,即异面直线所成角、直线与平面所成角。平面与平面所成二面角。它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos=来求。
3.有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。
三、例题分析
例1、⑴已知水平平面内的两条相交直线a, b所成的角为,如果将角的平分线绕着其顶点,在竖直平面内作上下转动, 转动到离开水平位值的处,且与两条直线a,b都成角,则与的大小关系是 ( )
A. 或 B. >或 <
C. > D. <
⑵已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有 ( )条.
A. 1 B. 2 C. 3 D. 4
⑶异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是 ( ).
A. 30 B. 50 C. 60 D. 90
分析与解答:
⑴ 如图1所示,易知直线上点A在平面上的射影是ι上的点B,过点B作BC⊥b,
则AC⊥b. 在Rt△OBC和Rt△OAC中,tg=,tg=.显然,AC>BC,
∴tan> tan,又、(0,,∴ >.故选C.
ι
(2)D(3)C
图1
例2、已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥AB;
(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异
面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由.
解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC,即△PBC和△PAC都是
以PC为斜边的直角三角形,,又M为AB的中点,∴MN⊥AB.
(2)∵AD⊥CD,PD⊥CD.∴∠PDA为所求二面角的平面角,即∠PDA=θ.
设AB=a,PA=b,AD=d,则,
设PM=CM则由N为PC的中点,∴MN⊥PC由(1)可知MN⊥AB,
∴MN为PC与AB的公垂线,这时PA=AD,∴θ=45°。
例3、如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.
解:(1)∵D是AB中点,△ABC为等腰直角三角形,
∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.
∴CD⊥平面A1B1BA ∴CD⊥AB1,又CE⊥AB1,
∴AB1⊥平面CDE;
(2)由CD⊥平面A1B1BA ∴CD⊥DE
∵AB1⊥平面CDE ∴DE⊥AB1,
∴DE是异面直线AB1与CD的公垂线段
∵CE=,AC=1 , ∴CD=∴;
(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,
∴∠B1CB是二面角B1—AC—B的平面角.
在Rt△CEA中,CE=,BC=AC=1,∴∠B1AC=600
∴, ∴,
∴ , ∴.
说明:作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.
例4、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(1)求证:四边形EFCD为直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(3)设SB的中点为M,当的值是多少时,能使△DMC
为直角三角形?请给出证明.
解:(1)∵ CD∥AB,AB平面SAB ∴CD∥平面SAB
面EFCD∩面SAB=EF,
∴CD∥EF ∵
又面
∴ 平面SAD,∴又
为直角梯形
(2)平面∥平面SAD
即为二面角D—EF—C的平面角
中
而且
为等腰三角形,
(3)当时,为直角三角形 .
,
平面平面.
在中,为SB中点,.
平面平面 为直角三角形。
例5.如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,CB与CB1交于点F.
(I)求证:A1C⊥平BDC1;
(II)求二面角B—EF—C的大小(结果用反三角函数值表示).
解法一:(Ⅰ)∵A1A⊥底面ABCD,则AC是A1C在底面ABCD的射影.
∵AC⊥BD.∴A1C⊥BD.
同理A1C⊥DC1,又BD∩DC1=D,
∴A1C⊥平面BDC1.
(Ⅱ)取EF的中点H,连结BH、CH,
又E、F分别是AC、B1C的中点,
解法二:(Ⅰ)以点C为坐标原点建立如图所示的空间直角坐标系,则C(0,0,0).
D(1,0,0),B(0,1,0),A1(1,1,1),C1(0,0,1),D1(1,0,1)
(Ⅱ)同(I)可证,BD1⊥平面AB1C.
⌒
⌒
⌒
⌒
⌒
B
A
C
O
PAGE
2福建省邵武第一中学 guanyoyo@
第17讲 导数应用的题型与方法
一、专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合
1.导数概念的理解.
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.
复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:
(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x)的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导,中间变量对自变量求导;最后求,并将中间变量代回为自变量的函数。整个过程可简记为分解——求导——回代。熟练以后,可以省略中间过程。若遇多重复合,可以相应地多次用中间变量。
三、例题分析
例1. 在处可导,则
思路: 在处可导,必连续 ∴
∴
例2.已知f(x)在x=a处可导,且f′(a)=b,求下列极限:
(1); (2)
分析:在导数定义中,增量△x的形式是多种多样,但不论△x选择哪种形式,△y也必须选择相对应的形式。利用函数f(x)在处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。
解:(1)
(2)
说明:只有深刻理解概念的本质,才能灵活应用概念解题。解决这类问题的关键是等价变形,使极限式转化为导数定义的结构形式。
例3.观察,,,是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。
解:若为偶函数 令
∴ 可导的偶函数的导函数是奇函数
另证:
∴ 可导的偶函数的导函数是奇函数
例4.(1)求曲线在点(1,1)处的切线方程;
(2)运动曲线方程为,求t=3时的速度。
分析:根据导数的几何意义及导数的物理意义可知,函数y=f(x)在处的导数就是曲线y=f(x)在点处的切线的斜率。瞬时速度是位移函数S(t)对时间的导数。
解:(1),
,即曲线在点(1,1)处的切线斜率k=0
因此曲线在(1,1)处的切线方程为y=1
(2)
。
例5. 求下列函数单调区间
(1) (2)
(3) (4)
解:(1) 时
∴ ,
(2) ∴ ,
(3)
∴
∴ , ,
(4) 定义域为
例6.求证下列不等式
(1)
(2)
(3)
证:(1)
∴ 为上 ∴ 恒成立
∴
∴ 在上 ∴ 恒成立
(2)原式 令
∴ ∴
∴
(3)令
∴
∴
例7.利用导数求和:
(1);
(2)。
分析:这两个问题可分别通过错位相减法及利用二项式定理来解决。转换思维角度,由求导公式,可联想到它们是另外一个和式的导数,利用导数运算可使问题的解决更加简捷。
解:(1)当x=1时,
;
当x≠1时,
∵,
两边都是关于x的函数,求导得
即
(2)∵,
两边都是关于x的函数,求导得。
令x=1得
,
即。
例8.设,求函数的单调区间.
分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.
解:.
当时 .
(i)当时,对所有,有.
即,此时在内单调递增.
(ii)当时,对,有,
即,此时在(0,1)内单调递增,又知函数在x=1处连续,因此,
函数在(0,+)内单调递增
(iii)当时,令,即.
解得.
因此,函数在区间内单调递增,在区间
内也单调递增.
令,解得.
因此,函数在区间内单调递减.
例9.已知抛物线与直线y=x+2相交于A、B两点,过A、B两点的切线分别为和。
(1)求A、B两点的坐标; (2)求直线与的夹角。
分析:理解导数的几何意义是解决本例的关键。
解 (1)由方程组
解得 A(-2,0),B(3,5)
(2)由y′=2x,则,。设两直线的夹角为θ,根据两直线的夹角公式,
所以
说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。
例10.(2001年天津卷)设,是上的偶函数。
(I)求的值; (II)证明在上是增函数。
解:(I)依题意,对一切有,即,
∴对一切成立,
由此得到,, 又∵,∴。
(II)证明:由,得,
当时,有,此时。∴在上是增函数。
四、04年高考导数应用题型集锦
1.(全国卷10)函数y=xcosx-sinx在下面哪个区间内是增函数( )
A () B (π,2π) C () D (2π,3π)
2.(全国卷22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=xlnx,
(i)求函数f(x)的最大值;(ii)设0
3.(天津卷9)函数)为增函数的区间是
(A) (B) (C) (D)
4.(天津卷20)(本小题满分12分) 已知函数在处取得极值。
(I)讨论和是函数的极大值还是极小值;
(II)过点作曲线的切线,求此切线方程。
(江苏卷10)函数在闭区间[-3,0]上的最大值、最小值分别是 ( )
(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-19
(浙江卷11)设f '(x)是函数f(x)的导函数,y=f '(x)的图象
如右图所示,则y=f(x)的图象最有可能的是
(A) (B) (C) (D)
(浙江卷20)设曲线y=ex(x≥0)在点M(t,et}处的切线l与x轴、y轴围成的三角形面积为S(t).
(1)求切线l的方程;(2)求S(t)的最大值。
PAGE
1福建省邵武第一中学 guanyoyo@
第5讲 数形结合思想在解题中的应用
一、知识整合
1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析
例1.
分析:
,
例2.
解:法一、常规解法:
法二、数形结合解法:
例3.
A. 1个 B. 2个 C. 3个 D. 1个或2个或3个
分析:
出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B)。
例4.
分析:
例5.
分析:
构造直线的截距的方法来求之。
截距。
例6.
分析:
以3为半径的圆在x轴上方的部分,(如图),而N则表示一条直线,其斜率k=1,纵截
例7.
MF1的中点,O表示原点,则|ON|=( )
分析:①设椭圆另一焦点为F2,(如图),
又注意到N、O各为MF1、F1F2的中点,
∴ON是△MF1F2的中位线,
②若联想到第二定义,可以确定点M的坐标,进而求MF1中点的坐标,最后利用两点间的距离公式求出|ON|,但这样就增加了计算量,方法较之①显得有些复杂。
例8.
分析:
例9.
解法一(代数法):,
解法二(几何法):
例10.
分析:
转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。
解:
第一象限的部分(包括端点)有公共点,(如图)
相切于第一象限时,u取最大值
三、总结提炼
数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。
四、强化训练
见优化设计。
【模拟试题】
一、选择题:
1. 方程的实根的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
2. 函数的图象恰有两个公共点,则实数a的取值范围是( )
A. B.
C. D.
3. 设命题甲:,命题乙:,则甲是乙成立的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 不充分也不必要条件
4. 适合且的复数z的个数为( )
A. 0个 B. 1个 C. 2个 D. 4个
5. 若不等式的解集为则a的值为( )
A. 1 B. 2 C. 3 D. 4
6. 已知复数的最大值为( )
A. B. C. D.
7. 若时,不等式恒成立,则a的取值范围为( )
A. (0,1) B. (1,2) C. (1,2] D. [1,2]
8. 定义在R上的函数上为增函数,且函数的图象的对称轴为,则( )
A. B.
C. D.
二、填空题:
9. 若复数z满足,则的最大值为___________。
10. 若对任意实数t,都有,则、由小到大依次为___________。
11. 若关于x的方程有四个不相等的实根,则实数m的取值范围为___________。
12. 函数的最小值为___________。
13. 若直线与曲线有两个不同的交点,则实数m的取值范围是___________。
三、解答题:
14. 若方程上有唯一解,
求m的取值范围。
15. 若不等式的解集为A,且,求a的取值范围。
16. 设,试求下述方程有解时k的取值范围。
【试题答案】
一、选择题
1. C
提示:画出在同一坐标系中的图象,即可。
2. D
提示:画出的图象
情形1:
情形2:
3. A
4. C
提示:|Z-1|=1表示以(1,0)为圆心,以1为半径的圆,显然点Z对应的复数满足条件,另外,点O对应的复数O,因其辐角是多值,它也满足,故满足条件的z有两个。
5. B
提示:画出的图象,依题意,从而。
6. C
提示:由可知,z2对应的点在以(0,0)为圆心,以2为半径的圆上,
而
表示复数对应的点的距离,
结合图形,易知,此距离的最大值为:
7. C
提示:令,
若a>1,两函数图象如下图所示,显然当时,
要使,只需使,综上可知
当时,不等式对恒成立。
若,两函数图象如下图所示,显然当时,不等式恒不成立。
可见应选C
8. A
提示:f(x+2)的图象是由f(x)的图象向左平移2个单位而得到的,又知f(x+2)的图象关于直线x=0(即y轴)对称,故可推知,f(x)的图象关于直线x=2对称,由f(x)在()上为增函数,可知,f(x)在上为减函数,依此易比较函数值的大小。
二、填空题:
9.
提示:|Z|=2表示以原点为原心,以2为半径的圆,即满足|Z|=2的复数Z对应的点在圆O上运动,(如下图),而|z+1-i|=|z-(-1+i)|表示复数Z与-1+i对应的两点的距离。
由图形,易知,该距离的最大值为。
10.
提示:由知,f(x)的图象关于直线x=2对称,又为二次函数,其图象是开口向上的抛物线,由f(x)的图象,易知的大小。
11.
提示:设,画出两函数图象示意图,要使方程有四个不相等实根,只需使
12. 最小值为
提示:对,联想到两点的距离公式,它表示点(x,1)到(1,0)的距离,表示点(x,1)到点(3,3)的距离,于是表示动点(x,1)到两个定点(1,0)、(3,3)的距离之和,结合图形,易得。
13.
提示:y=x-m表示倾角为45°,纵截距为-m的直线方程,而则表示以(0,0)为圆心,以1为半径的圆在x轴上方的部分(包括圆与x轴的交点),如下图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距,即。
三、解答题:
14. 解:原方程等价于
令,在同一坐标系内,画出它们的图象,
其中注意,当且仅当两函数的图象在[0,3)上有唯一公共点时,原方程有唯一解,由下图可见,当m=1,或时,原方程有唯一解,因此m的取值范围为[-3,0]{1}。
注:一般地,研究方程时,需先将其作等价变形,使之简化,再利用函数图象的直观性研究方程的解的情况。
15. 解:令表示以(2,0)为圆心,以2为半径的圆在x轴的上方的部分(包括圆与x轴的交点),如下图所示,表示过原点的直线系,不等式的解即是两函数图象中半圆在直线上方的部分所对应的x值。
由于不等式解集
因此,只需要
∴a的取值范围为(2,+)。
16. 解:将原方程化为:,
∴
令,它表示倾角为45°的直线系,
令,它表示焦点在x轴上,顶点为(-a,0)(a,0)的等轴双曲线在x轴上方的部分,
∵原方程有解,
∴两个函数的图象有交点,由下图,知
∴
∴k的取值范围为
PAGE
13福建省邵武第一中学 guanyoyo@
第2讲 高考填空题的常用方法
数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.
数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
一、直接法
这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例1设其中i,j为互相垂直的单位向量,又,则实数m = 。
解:∵,∴∴,而i,j为互相垂直的单位向量,故可得∴。
例2已知函数在区间上为增函数,则实数a的取值范围是 。
解:,由复合函数的增减性可知,在上为增函数,∴,∴。
例3现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13长比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为 。
解:由题设,此人猜中某一场的概率为,且猜中每场比赛结果的事件为相互独立事件,故某人全部猜中即获得特等奖的概率为。
二、特殊化法
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
例4 在△ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。
解:特殊化:令,则△ABC为直角三角形,,从而所求值为。
例5 过抛物线的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长分别为p、q,则 。
分析:此抛物线开口向上,过焦点且斜率为k的直线与抛物线均有两个交点P、Q,当k变化时PF、FQ的长均变化,但从题设可以得到这样的信息:尽管PF、FQ不定,但其倒数和应为定值,所以可以针对直线的某一特定位置进行求解,而不失一般性。
解:设k = 0,因抛物线焦点坐标为把直线方程代入抛物线方程得,∴,从而。
例6 求值 。
分析:题目中“求值”二字提供了这样信息:答案为一定值,于是不妨令,得结果为。
三、数形结合法
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
例7 如果不等式的解集为A,且,那么实数a的取值范围是 。
解:根据不等式解集的几何意义,作函数和
函数的图象(如图),从图上容易得出实数a的取
值范围是。
例8 求值 。
解:,
构造如图所示的直角三角形,则其中的角即为,从而
所以可得结果为。
例9 已知实数x、y满足,则的最大值是 。
解:可看作是过点P(x,y)与M(1,0)的直线的斜率,其中点P的圆上,如图,当直线处于图中切线位置时,斜率最大,最大值为。
四、等价转化法
通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
例10 不等式的解集为(4,b),则a= ,b= 。
解:设,则原不等式可转化为:∴a > 0,且2与是方程的两根,由此可得:。
例11 不论k为何实数,直线与曲线恒有交点,则实数a的取值范围是 。
解:题设条件等价于点(0,1)在圆内或圆上,或等价于点(0,1)到圆,∴。
例12 函数单调递减区间为 。
解:易知∵y与y2有相同的单调区间,而,∴可得结果为。
总之,能够多角度思考问题,灵活选择方法,是快速准确地解数学填空题的关键。
五、练习
1 已知函数,则
讲解 由,得,应填4.
请思考为什么不必求呢?
2. 集合的真子集的个数是
讲解 ,显然集合M中有90个元素,其真子集的个数是,应填.
快速解答此题需要记住小结论;对于含有n个元素的有限集合,其真子集的个数是
3. 若函数的图象关于直线对称,则
讲解 由已知抛物线的对称轴为,得 ,而,有,故应填6.
4. 果函数,那么
讲解 容易发现,这就是我们找出的有用的规律,于是
原式=,应填
本题是2002年全国高考题,十分有趣的是,2003年上海春考题中也有一道类似题:
设,利用课本中推导等差数列前n项和的公式的方法,可求得
5. 已知点P在第三象限,则角的终边在第象限.
讲解 由已知得
从而角的终边在第二象限,故应填二.
6. 不等式()的解集为.
讲解 注意到,于是原不等式可变形为
而,所以,故应填
7. 如果函数的图象关于直线对称,那么
讲解 ,其中.
是已知函数的对称轴,
,
即 ,
于是 故应填 .
在解题的过程中,我们用到如下小结论:
函数和的图象关于过最值点且垂直于x轴的直线分别成轴对称图形.
8. 设复数在复平面上对应向量,将按顺时针方向旋转后得到向量,对应的复数为,则
讲解 应用复数乘法的几何意义,得
,
于是
故应填
9.设非零复数满足 ,则代数式 的值是____________.
讲解 将已知方程变形为 ,
解这个一元二次方程,得
显然有, 而,于是
原式=
=
=
在上述解法中,“两边同除”的手法达到了集中变量的目的,这是减少变元的一个上策,值得重视.
10. 已知是公差不为零的等差数列,如果是的前n项和,那么
讲解 特别取,有,于是有
故应填2.
11. 列中, , 则
讲解 分类求和,得
,故应填.
12. 以下四个命题:
①
②
③凸n边形内角和为
④凸n边形对角线的条数是
其中满足“假设时命题成立,则当n=k+1时命题也成立’’.但不满足“当(是题中给定的n的初始值)时命题成立”的命题序号是 .
讲解 ①当n=3时,,不等式成立;
2 当n=1时,,但假设n=k时等式成立,则
;
③ ,但假设成立,则
④ ,假设成立,则
故应填②③.
13.某商场开展促销活动,设计一种对奖券,号码从000000到999999. 若号码的奇位数字是不同的奇数,偶位数字均为偶数时,为中奖号码,则中奖面(即中奖号码占全部号码的百分比)为 .
讲解 中奖号码的排列方法是: 奇位数字上排不同的奇数有种方法,偶位数字上排偶数的方法有,从而中奖号码共有种,于是中奖面为
故应填
14. 的展开式中的系数是
讲解 由知,所求系数应为的x项的系数与项的系数的和,即有
故应填1008.
15. 过长方体一个顶点的三条棱长为3、4、5, 且它的八个顶点都在同一球面上,这个球的表面积是________.
讲解 长方体的对角线就是外接球的直径, 即有
从而 ,故应填
16. 若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积是 (只需写出一个可能的值).
讲解 本题是一道很好的开放题,解题的开窍点是:每个面的三条棱是怎样构造的,依据“三角形中两边之和大于第三边”,就可否定{1,1,2},从而得出{1,1,1},{1,2,2},{2,2,2}三种形态,再由这三类面构造满足题设条件的四面体,最后计算出这三个四面体的体积分别为: , ,,故应填.、 、 中的一个即可.
17. 如右图,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)
讲解 因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:上下、左右、前后三个方向的射影,也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.
四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图所示;
四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图所示. 故应填.
18 直线被抛物线截得线段的中点坐标是___________.
讲解 由消去y,化简得
设此方程二根为,所截线段的中点坐标为,则
故 应填 .
19 椭圆上的一点P到两焦点的距离的乘积为m,则当m取最大值时,点P的坐标是_____________________.
讲解 记椭圆的二焦点为,有
则知
显然当,即点P位于椭圆的短轴的顶点处时,m取得最大值25.
故应填或
20 一只酒杯的轴截面是抛物线的一部分,它的函数解析式是,在杯内放一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的取值范围是___________.
讲解 依抛物线的对称性可知,大圆的圆心在y轴上,并且圆与抛物线切于抛物线的顶点,从而可设大圆的方程为
由
消去x,得 (*)
解出 或
要使(*)式有且只有一个实数根,只要且只需要即
再结合半径,故应填
eq \o\ac(○,1)
eq \o\ac(○,2)
eq \o\ac(○,3)
eq \o\ac(○,4)
A
B
D
C
E
F
A1
B1
C1
D1
PAGE
1福建省邵武第一中学 guanyoyo@
第7讲 化归与转化的思想在解题中的应用
一、知识整合
1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
2.化归与转化思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
3.转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
4.化归与转化应遵循的基本原则:
(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、例题分析
例1.某厂2001年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m与全年总投入N的大小关系是 ( )
A. m>N B. m
[分析]每月的利润组成一个等差数列{an},且公差d>0,每月的投资额组成一个等比数列{bn},且公比q>1。,且,比较与的大小。
若直接求和,很难比较出其大小,但注意到等差数列的通项公式an=a1+(n-1)d是关于n的一次函数,其图象是一条直线上的一些点列。等比数列的通项公式bn=a1qn-1是关于n的指数函数,其图象是指数函数上的一些点列。
在同一坐标系中画出图象,直观地可以看出ai≥bi 则>,即m>N。
[点评]把一个原本是求和的问题,退化到各项的逐一比较大小,而一次函数、指数函数的图象又是每个学生所熟悉的。在对问题的化归过程中进一步挖掘了问题的内涵,通过对问题的反思、再加工后,使问题直观、形象,使解答更清新。
例2.如果,三棱锥P—ABC中,已知PA⊥BC,PA=BC=l,PA,BC的公垂线ED=h.求证三棱锥P—ABC的体积.
分析:如视P为顶点,△ABC为底面,则无论是S△ABC以及高h都不好求.如果观察图形,换个角度看问题,创造条件去应用三棱锥体积公式,则可走出困境.
解:如图,连结EB,EC,由PA⊥BC,PA⊥ED,ED∩BC=E,可得PA⊥面ECD.这样,截面ECD将原三棱锥切割成两个分别以ECD为底面,以PE、AE为高的小三棱锥,而它们的底面积相等,高相加等于PE+AE=PA=l,所以
VP-ABC=VP-ECD+VA-ECD=S△ECD AE+S△ECD PE=S△ECD PA= BC·ED·PA=.
评注:辅助截面ECD的添设使问题转化为已知问题迎刃而解.
例3.在的展开式中x的系数为( ).
(A)160 (B)240 (C)360 (D)800
分析与解:本题要求展开式中x的系数,而我们只学习过多项式乘法法则及二项展开式定理,因此,就要把对x系数的计算用上述两种思路进行转化:
思路1:直接运用多项式乘法法则和两个基本原理求解,则展开式是一个关于x的10次多项式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展开式中的一次项只能从5个括号中的一个中选取一次项3x并在其余四个括号中均选 择常数项2相乘得到,故为·(3x)··24=5×3×16x=240x,所以应选(B).
思路2 利用二项式定理把三项式乘幂转化为二项式定理再进行计算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+2=x2+(3x+2)转化,可以发现只有(3x+2)5中会有x项,即(3x)·24=240x,故选(B);②如利用x2+3x+2= (x2+2)+3x进行转化,则只 (x2+2) 4·3x中含有x一次项,即·3x·C44·24=240x;③如利用x2+3x+2=(x2+3x)+2进行转化,就只有·(x2+3x)·24中会有x项,即240x;④如选择x2+3x+2=(1+x)(2+x)进行转化,=×展开式中的一次项x只能由(1+x)5中的一次项乘以(2+x)5展开式中的常数项加上(2+x)5展开式中的一次项乘以(1+x)5展开式中的常数项后得到,即为x·25+ 24 x 15=160x+80x=240x,故选(B).
评注:化归与转化的意识帮我们把未知转化为已知。
例4.若不等式对一切均成立,试求实数的取值范围。
解:
令,则要使它对均有,只要有
或。
点评:在有几个变量的问题中,常常有一个变元处于主要地位,我们称之为主元,由于思维定势的影响,在解决这类问题时,我们总是紧紧抓住主元不放,这在很多情况下是正确的。但在某些特定条件下,此路往往不通,这时若能变更主元,转移变元在问题中的地位,就能使问题迎刃而解。本题中,若视x为主元来处理,既繁且易出错,实行主元的转化,使问题变成关于p的一次不等式,使问题实现了从高维向低维转化,解题简单易行。
三、总结提炼
1.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
2.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。
PAGE
4福建省邵武第一中学 guanyoyo@
第8讲 高考中常用数学的方法
------配方法、待定系数法、换元法
一、知识整合
配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.
配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决.
待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.
换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.
二、例题解析
例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).
(A) (B) (C)5 (D)6
分析及解:设长方体三条棱长分别为x,y,z,则依条件得:
2(xy+yz+zx)=11,4(x+y+z)=24.而欲求的对角线长为,因此需将对称式写成基本对称式x+y+z及xy+yz+zx的组合形式,完成这种组合的常用手段是配方法.故=62-11=25
∴ ,应选C.
例2.设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则ΔF1PF2的面积是( ).
(A)1 (B) (C)2 (D)
分析及解:欲求 (1),而由已知能得到什么呢?
由∠F1PF2=90°,得 (2),
又根据双曲线的定义得|PF1|-|PF2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即,
故∴ ,∴ 选(A).
注:配方法实现了“平方和”与“和的平方”的相互转化.
例3.设双曲线的中心是坐标原点,准线平行于x轴,离心率为,已知点P(0,5)到该双曲线上的点的最近距离是2,求双曲线方程.
分析及解:由题意可设双曲线方程为,∵,∴a=2b,因此所求双曲线方程可写成: (1),故只需求出a可求解.
设双曲线上点Q的坐标为(x,y),则|PQ|= (2),∵点Q(x,y)在双曲线上,∴(x,y)满足(1)式,代入(2)得|PQ|= (3),此时|PQ|2表示为变量y的二次函数,利用配方法求出其最小值即可求解.
由(3)式有(y≥a或y≤-a).
二次曲线的对称轴为y=4,而函数的定义域y≥a或y≤-a,因此,需对a≤4与a>4分类讨论.
(1)当a≤4时,如图(1)可知函数在y=4处取得最小值,
∴令,得a2=4
∴所求双曲线方程为.
(2)当a>4时,如图(2)可知函数在y=a处取得最小值,
∴令,得a2=49,
∴所求双曲线方程为.
注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a有关,因此需对字母a的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.
例4.设f(x)是一次函数,且其在定义域内是增函数,又,试求f(x)的表达式.
分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.
设一次函数y=f(x)=ax+b (a>0),可知 ,
∴.
比较系数可知:
解此方程组,得 ,b=2,∴所求f(x)=.
例5.如图,已知在矩形ABCD中,C(4,4),点A在曲线(x>0,y>0)上移动,且AB,BC两边始终分别平行于x轴,y轴,求使矩形ABCD的面积为最小时点A的坐标.
分析及解:设A(x,y),如图所示,则(4-x)(4-y) (1)
此时S表示为变量x,y的函数,如何将S表示为一个变量x(或y)的函数呢?有的同学想到由已知得x2+y2=9,如何利用此条件?是从等式中解出x(或y),再代入(1)式,因为表达式有开方,显然此方法不好.
如果我们将(1)式继续变形,会得到S=16-4(x+y)+xy (2)
这时我们可联想到x2+y2与x+y、xy间的关系,即(x+y)2=9+2xy.
因此,只需设t=x+y,则xy=,代入(2)式得 S=16-4t+(3)S表示为变量t的二次函数,
∵0
此时
注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误.
例6.设方程x2+2kx+4=0的两实根为x1,x2,若≥3,求k的取值范围.
解:∵≥3,
以,代入整理得(k2-2)2≥5,又∵Δ=4k2-16≥0,
∴解得k∈(-)∪[,+].
例7.点P(x,y)在椭圆上移动时,求函数u=x2+2xy+4y2+x+2y的最大值.
解:∵点P(x,y)在椭圆上移动, ∴可设 于是
=
=
令, ∵,∴|t|≤.
于是u=,(|t|≤).
当t=,即时,u有最大值.
∴θ=2kπ+(k∈Z)时,.
例8.过坐标原点的直线l与椭圆相交于A,B两点,若以AB为直径的圆恰好通过椭圆的左焦点F,求直线l的倾斜角.
解:设A(x1,y1),B(x2,y2)
直线l的方程为y=kx,将它代入椭圆方
程整理得 (*)
由韦达定理,(1),(2)
又F(1,0)且AF⊥BF,∴, 即 ,
将,代入上式整理得 ,
将(1)式,(2)式代入,解得 . 故直线l的倾斜角为或.
注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k的方程求解.
例9.设集合A={}
(1)若A中有且只有一个元素,求实数a的取值集合B;
(2)当a∈B时,不等式x2-5x-6
解:(1)令t=2x,则t>0且方程化为t2-2t+a=0 (*),A中有且只有一个元素等价于方程(*)有且只有一个正根,再令f(t)=t2-2t+a,
则Δ=0 或即a=1或a≤0,从而B=(-,0]∪{1}.
(2)当a=1时,
当a≤0,令g(a)=a(x-4)-(x2-5x-6),则当a≤0时不等式 恒成立,
即当a≤0时,g(a)>0恒成立,故 ≤4.
综上讨论,x的取值范围是(,4).
5福建省邵武第一中学 guanyoyo@
第4讲 函数与方程的思想方法
一、知识整合
函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究。
就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系.
3.(1) 函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点。
(2) 函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。
(3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。
(4) 函数f(x)=(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。
(5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。
(6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
二、例题解析
Ⅰ.运用函数与方程、表达式相互转化的观点解决函数、方程、表达式问题。
例1 已知,(a、b、c∈R),则有( )
(A) (B) (C) (D)
解析 法一:依题设有 a·5-b·+c=0
∴是实系数一元二次方程的一个实根;
∴△=≥0 ∴ 故选(B)
法二:去分母,移项,两边平方得:
≥10ac+2·5a·c=20ac
∴ 故选(B)
点评解法一通过简单转化,敏锐地抓住了数与式的特点,运用方程的思想使问题得到解决;解法二转化为b2是a、c的函数,运用重要不等式,思路清晰,水到渠成。
练习1 已知关于的方程 -(2 m-8)x +-16 = 0的两个实根 、 满足 <<,则实数m的取值范围_______________。
答案:;
2 已知函数 的图象如下,则( )
(A) (B)
(C) (D)
答案:A.
3 求使不等式≤·对大于1的任意x、y恒成立的a的取值范围。
Ⅱ:构造函数或方程解决有关问题:
例2 已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。
解析∵t∈[,8],∴f(t)∈[,3]
原题转化为:>0恒成立,为m的一次函数(这里思维的转化很重要)
当x=2时,不等式不成立。
∴x≠2。令g(m)=,m∈[,3]
问题转化为g(m)在m∈[,3]上恒对于0,则:;
解得:x>2或x<-1
评析 首先明确本题是求x的取值范围,这里注意另一个变量m,不等式的左边恰是m的一次函数,因此依据一次函数的特性得到解决。在多个字母变量的问题中,选准“主元”往往是解题的关键。
例3 为了更好的了解鲸的生活习性,某动物保护组织在受伤的鲸身上装了电子监测装置,从海洋放归点A处,如图(1)所示,把它放回大海,并沿海岸线由西向东不停地对它进行了长达40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动),然后又在观测站B处对鲸进行生活习性的详细观测,已知AB=15km,观测站B的观测半径为5km。
观测时刻t(分钟) 跟踪观测点到放归点的距离a(km) 鲸位于跟踪观测点正北方向的距离b(km)
10 1 0.999
20 2 1.413
30 3 1.732
40 4 2.001
(1)据表中信息:①计算出鲸沿海岸线方向运动的速度;②试写出a、b近似地满足的关系式并
画出鲸的运动路线草图;
(2)若鲸继续以(1)-②运动的路线运动,试预测,该鲸经过多长时间(从放归时开设计时)可进入前方观测站B的观测范围?并求出可持续观测的时间及最佳观测时刻。(注:≈6.40;精确到1分钟)
解析(1)由表中的信息可知:
①鲸沿海岸线方向运动的速度为:(km/分钟)
②a、b近似地满足的关系式为:运动路线如图
(2)以A为原点,海岸线AB为x轴建立直角坐标系,设鲸所在
位置点P(x,y),由①、②得:,又B(15,0),
依题意:观测站B的观测范围是:
≤5 (y≥0) 又
∴≤25 解得:11.30≤x≤17.70
由①得:∴该鲸经过t==113分钟可进入前方观测站B的观测范围
持续时间:=64分钟
∴该鲸与B站的距离d==
当d最小时为最佳观测时刻,这时x==14.5,t=145分钟。
练习4.已知关于的方程-2= 0有实数解,求实数的取值范围。
(答案:0≤≤4-)
Ⅲ:运用函数与方程的思想解决数列问题
例4设等差数列{an}的前n项和为Sn,已知,>0,<0,
(1)求公差d的取值范围;
(2)指出、、…,中哪一个最大,并说明理由。
解析(1)由得:,
∵=>0 =<0
∴
(2)
∵d<0,是关于n 的二次函数,对称轴方程为:x=
∵
三、强化练习
1.展开式中的系数为____________.
2.已知方程的四个根组成一个首项为的等差数列,则( )
A 1 B C D
3.设双曲线的焦点在轴上,两条渐近线为,则该双曲线的离心率( )
A 5 B C D
4.已知锐角三角形ABC中,。
Ⅰ.求证;
Ⅱ.设,求AB边上的高。
5.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为。
Ⅰ.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
Ⅱ.从甲、乙、丙加工的零件中各取一个进行检验,求至少有一个是一等品的概率。
6.设,,曲线在点处切线的倾斜角的取值范围为,则点P到曲线对称轴距离的取值范围是( )
7.设双曲线C:与直线相交于两个不同的点A、B。
Ⅰ.求双曲线C的离心率的取值范围;
Ⅱ.设直线与轴的交点为P,且,求的值。
x
2
1
y
0
海岸
西
东
图1
A
B
A
B
y
x
图2
PAGE
1第10讲 不等式
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
一、知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.
4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).
5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.
6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。
7.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.
二、方法技巧
1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。如运用放缩法证明不等式时要注意调整放缩的度。
4.根据题目结构特点,执果索因,往往是有效的思维方法。
三、例题分析
b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)
(2)当1≤y≤3时,
所以当y=1时,= 4.
简评:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示
其数学实质.即求集合M中的元素满足关系式
例2.已知非负实数,满足且,则的最大值是( )
A. B. C. D.
解:画出图象,由线性规划知识可得,选D
例3.数列由下列条件确定:
(1)证明:对于,
(2)证明:对于.
证明:(1)
(2)当时,
=。
例4.解关于的不等式:
分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当
。
例5.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是
解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得
(Ⅰ)
所以f(-2)的取值范围是[6,10].
解法二(数形结合)
建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.
解法三(利用方程的思想)
又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4, ①
所以 3≤3f(-1)≤6. ②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
简评:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:
2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.
例6.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=x,均不相交.试证明对一切都有.
分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).
证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故
Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.
简评:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.
例7.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为,以后每年末的汽车保有量依次为,每年新增汽车万辆。由题意得
PAGE
1福建省邵武第一中学 guanyoyo@
第9讲 函数问题的题型与方法
三、函数的概念
函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:
1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.
2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.
3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.
本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.
Ⅰ 深化对函数概念的认识
例1.下列函数中,不存在反函数的是 ( )
分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.
从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。
此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.
说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.
由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.
例1.(重庆市)函数的定义域是( D )
A、 B、 C、 D、
例2.(天津市)函数()的反函数是( D )
A、 B、
C、 D、
也有个别小题的难度较大,如
例3.(北京市)函数其中P、M为实数集R的两个非空子集,又规定,,给出下列四个判断:
①若,则 ②若,则
③若,则 ④若,则
其中正确判断有( B )
A、 1个 B、 2个 C、 3个 D、 4个
分析:若,则只有这一种可能.②和④是正确的.
Ⅱ 系统小结确定函数三要素的基本类型与常用方法
1.求函数定义域的基本类型和常用方法
由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字
例2.已知函数定义域为(0,2),求下列函数的定义域:
分析:x的函数f(x)是由u=x与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x<2.求x的取值范围.
解:(1)由0<x<2, 得
说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.
求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。
2.求函数值域的基本类型和常用方法
函数的值域是由其对应法则和定义域共同决定的.其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域.
3.求函数解析式举例
例3.已知xy<0,并且4x-9y=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.
分析: 4x-9y=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?
所以
因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).
说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:
(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.
(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.
四、函数的性质、图象
(一)函数的性质
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.
这部分内容的重点是对函数单调性和奇偶性定义的深入理解.
函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.
对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.
这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.
1.对函数单调性和奇偶性定义的理解
例4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是 ( )
A.1 B.2 C.3 D.4
分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.
奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.
若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.
说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零.
2.复合函数的性质
复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.
复合函数的性质由构成它的函数性质所决定,具备如下规律:
(1)单调性规律
如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么
若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.
(2)奇偶性规律
若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.
例5.若y=log(2-ax)在[0,1]上是x的减函数,则a的取值范围是( )
A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)
分析:本题存在多种解法,但不管哪种方法,都必须保证:①使log(2-ax)有意义,即a>0且a≠1,2-ax>0.②使log(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logu,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=log(2-ax)定义域的子集.
解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),
即log2>log(2-a).
解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= logu应为增函数,得a>1,排除A,C,再令
故排除D,选B.
说明:本题为1995年全国高考试题,综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.
3.函数单调性与奇偶性的综合运用
例6.甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶.
分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.
故所求函数及其定义域为
但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要
论函数的增减性来解决.
由于vv>0,v-v>0,并且
又S>0,所以即
则当v=c时,y取最小值.
说明:此题是1997年全国高考试题.由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.
(二)函数的图象
1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.
2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.
3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.
4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.
以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.
运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.
1.作函数图象的一个基本方法
例7.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.
分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.
解:(1)当x≥2时,即x-2≥0时,
当x<2时,即x-2<0时,
这是分段函数,每段函数图象可根据二次函数图象作出(见图6)
(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;
当0<x<1时,lgx<0,
所以
这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)
说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图象.
在变换函数解析式中运用了转化变换和分类讨论的思想.
2.作函数图象的另一个基本方法——图象变换法.
一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象,这就是函数的图象变换.
在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.
(1)平移变换
函数y=f(x+a)(a≠0)的图象可以通过把函数y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;
函数y=f(x)+b(b≠0)的图象可以通过把函数y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.
(2)伸缩变换
函数y=Af(x)(A>0,A≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A>1)或缩短(0<A<1)成原来的A倍,横坐标不变而得到.
函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上
而得到.
(3)对称变换
函数y=-f(x)的图象可以通过作函数y=f(x)的图象关于x轴对称的图形而得到.
函数y=f(-x)的图象可以通过作函数y=f(x)的图象关于y轴对称的图形而得到.
函数y=-f(-x)的图象可以通过作函数y=f(x)的图象关于原点对称的图形而得到.
函数y=f-1(x)的图象可以通过作函数y=f(x)的图象关于直线y=x对称的图形而得到。
函数y=f(|x|)的图象可以通过作函数y=f(x)在y轴右方的图象及其与y轴对称的图形而得到.
函数y=|f(x)|的图象可以通过作函数y=f(x)的图象,然后把在x轴下方的图象以x轴为对称轴翻折到x轴上方,其余部分保持不变而得到.
例8.已知f(x+199)=4x+4x+3(x∈R),那么函数f(x)的最小值为____.
分析:由f(x+199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得
求得f(x)的最小值即f(x+199)的最小值是2.
说明:函数图象与函数性质本身在学习中也是密切联系的,是“互相利用”关系,函数图象在判断函数奇偶性、单调性、周期性及求最值等方面都有重要用途.
五、函数综合应用
函数的综合复习是在系统复习函数有关知识的基础上进行函数的综合应用:
1.在应用中深化基础知识.在复习中基础知识经历一个由分散到系统,由单一到综合的发展过程.这个过程不是一次完成的,而是螺旋式上升的.因此要在应用深化基础知识的同时,使基础知识向深度和广度发展.
2.以数学知识为载体突出数学思想方法.数学思想方法是观念性的东西,是解决数学问题的灵魂,同时它又离不开具体的数学知识.函数内容最重要的数学思想是函数思想和数形结合的思想.此外还应注意在解题中运用的分类讨论、换元等思想方法.解较综合的数学问题要进行一系列等价转化或非等价转化.因此本课题也十分重视转化的数学思想.
3.重视综合运用知识分析问题解决问题的能力和推理论证能力的培养.函数是数学复习的开始,还不可能在大范围内综合运用知识.但从复习开始就让学生树立综合运用知识解决问题的意识是十分重要的.推理论证能力是学生的薄弱环节,近几年高考命题中加强对这方面的考查,尤其是对代数推理论证能力的考查是十分必要的.本课题在例题安排上作了这方面的考虑.
具体要求是:
1.在全面复习函数有关知识的基础上,进一步深刻理解函数的有关概念,全面把握各类函数的特征,提高运用基础知识解决问题的能力.
2.掌握初等数学研究函数的方法,提高研究函数的能力,重视数形结合数学思想方法的运用和推理论证能力的培养.
3.初步沟通函数与方程、不等式及解析几何有关知识的横向联系,提高综合运用知识解决问题的能力.
4.树立函数思想,使学生善于用运动变化的观点分析问题.
本部分内容的重点是:通过对问题的讲解与分析,使学生能较好的调动函数的基础知识解决问题,并在解决问题中深化对基础知识的理解,深化对函数思想、数形结合思想的理解与运用.
难点是:函数思想的理解与运用,推理论证能力、综合运用知识解决问题能力的培养与提高.
函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.
1.准确理解、熟练运用,不断深化有关函数的基础知识
在中学阶段函数只限于定义在实数集合上的一元单值函数,其内容可分为两部分.第一部分是函数的概念和性质,这部分的重点是能从变量的观点和集合映射的观点理解函数及其有关概念,掌握描述函数性质的单调性、奇偶性、周期性等概念;第二部分是七类常见函数(一次函数、二次函数、指数函数、对数函数、三角函数和反三角函数)的图象和性质.第一部分是理论基础,第二部分是第一部分的运用与发展.
例9.已知函数f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的个数是.( )
A.0 B.1 C.0或1 D.1或2
分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言.从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的.这里给出了函数y=f(x)的定义域是F,但未明确给出1与F的关系,当1∈F时有1个交点,当1 F时没有交点,所以选C.
2.掌握研究函数的方法,提高研究函数问题的能力
高中数学对函数的研究理论性加强了,对一些典型问题的研究十分重视,如求函数的定义域,确定函数的解析式,判断函数的奇偶性,判断或证明函数在指定区间的单调性等,并形成了研究这些问题的初等方法,这些方法对分析问题能力,推理论证能力和综合运用数学知识能力的培养和发展是十分重要的.
函数、方程、不等式是相互联系的.对于函数f(x)与g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)则分别构成方程和不等式,因此对于某些方程、不等式的问题用函数观点认识是十分有益的;方程、不等式从另一个侧面为研究函数提供了工具.
例10.方程lgx+x=3的解所在区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,+∞)
分析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图2).它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D.至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了.实际上这是要比较与2的大小.当x=2时,lgx=lg2,3-x=1.由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C.
说明:本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断.
例11.(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;
(2)试用上面结论证明下面的命题:
若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.
分析:问题(1)实质上是要证明,一次函数f(x)=kx+h(k≠0), x∈(m, n).若区间两个端点的函数值均为正,则对于任意x∈(m,n)都有f(x)>0.之所以具有上述性质是由于一次函数是单调的.因此本问题的证明要从函数单调性入手.
(1)证明:
当k>0时,函数f(x)=kx+h在x∈R上是增函数,m<x<n,f(x)>f(m)>0;
当k<0时,函数f(x)=kx+h在x∈R上是减函数,m<x<n,f(x)>f(n)>0.
所以对于任意x∈(m,n)都有f(x)>0成立.
(2)将ab+bc+ca+1写成(b+c)a+bc+1,构造函数f(x)=(b+c)x+bc+1.则
f(a)=(b+c)a+bc+1.
当b+c=0时,即b=-c, f(a)=bc+1=-c2+1.
因为|c|<1,所以f(a)=-c2+1>0.
当b+c≠0时,f(x)=(b+c)x+bc+1为x的一次函数.
因为|b|<1,|c|<1,
f(1)=b+c+bc+1=(1+b)(1+c)>0, f(-1)=-b-c+bc+1=(1-b)(1-c)>0.
由问题(1)对于|a|<1的一切值f(a)>0,即(b+c)a+bc+1=ab+ac+bc+1>0.
说明:问题(2)的关键在于“转化”“构造”.把证明ab+bc+ca>-1转化为证明ab+bc+ca+1>0, 由于式子ab+bc+ca+1中, a,b,c是对称的,构造函数f(x)=(b+c)x+bc+1,则f(a)=(b+c)a+bc+1,问题转化为在|a|<1,|b|<1,|c|<1的条件下证明f(a)>0.(也可构造 f(x)=(a+c)x+ac+1,证明f(b)>0)。
例12.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
分析:欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.
(1)证明:f(x+y)=f(x)+f(y)(x,y∈R), ①
令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有
0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.
(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.
f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,
3-(1+k)·3+2>0对任意x∈R成立.
令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.
R恒成立.
说明:问题(2)的上述解法是根据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t-(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行研究求解.本题还有更简捷的解法:
分离系数由k·3<-3+9+2得
上述解法是将k分离出来,然后用平均值定理求解,简捷、新颖.
六、强化训练
1.对函数作代换x=g(t),则总不改变f(x)值域的代换是 ( ) A. B.
C.g(t)=(t-1)2 D.g(t)=cost
2.方程f(x,y)=0的曲线如图所示,那么方程f(2-x,y)=0的曲线是 ( )
3.已知命题p:函数的值域为R,命题q:函数
是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是
A.a≤1 B.a<2 C.1
4.方程lgx+x=3的解所在的区间为 ( )
A. (0,1) B. (1,2) C. (2,3) D. (3,+∞)
5.如果函数f(x)=x+bx+c对于任意实数t,都有f(2+t)=f(2-t),那么( )
A. f(2)
C. f(2)
6.已知函数y=f(x)有反函数,则方程f(x)=a (a是常数) ( )
A.有且仅有一个实根 B.至多一个实根 C.至少一个实根 D.不同于以上结论
7.已知sinθ+cosθ=,θ∈(,π),则tanθ的值是 ( )
A. - B. - C. D.
8.已知等差数列的前n项和为S,且S=S (p≠q,p、q∈N),则S=_________。
9.关于x的方程sinx+cosx+a=0有实根,则实数a的取值范围是__________。
10.正六棱锥的体积为48,侧面与底面所成的角为45°,则此棱锥的侧面积为___________。
11. 建造一个容积为8m,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为___________。
12.已知函数满足:,,则
。
13.已知为正整数,方程的两实根为,且,则的最小值为________________________。
14.设函数f(x)=lg(ax+2x+1).
(1)若f(x)的定义域是R,求实数a的取值范围;
(2)若f(x)的值域是R,求实数a的取值范围.
15.设不等式2x-1>m(x-1)对满足|m|≤2的一切实数m的取值都成立。求x的取值范围。
16. 设等差数列{a}的前n项的和为S,已知a=12,S>0,S<0 。
①.求公差d的取值范围;
②.指出S、S、…、S中哪一个值最大,并说明理由。(1992年全国高考)
P
M
A H B
D C
17. 如图,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上任一点,设∠BAC=θ,PA=AB=2r,求异面直线PB和AC的距离。
18. 已知△ABC三内角A、B、C的大小成等差数列,且tanA·tanC=2+,又知顶点C的对边c上的高等于4,求△ABC的三边a、b、c及三内角。
19. 设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求 实数a的取值范围。
20.已知偶函数f(x)=cossinx-sin(x-)+(tan-2)sinx-sin的最小值是0,求f(x)的最大值 及此时x的集合.
21.已知,奇函数在上单调.
(Ⅰ)求字母应满足的条件;
(Ⅱ)设,且满足,求证:.
七、参考答案
1.不改变f(x)值域,即不能缩小原函数定义域。选项B,C,D均缩小了的定义域,故选A。
2.先作出f(x,y)=0关于轴对称的函数的图象,即为函数f(-x,y)=0的图象,又
f(2-x,y)=0即为,即由f(-x,y)=0向右平移2个单位。故选C。
3.命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数的判别式,从而;命题q为真时,。
若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。
若p为真,q为假时,无解;若p为假,q为真时,结果为1
4.图像法解方程,也可代入各区间的一个数(特值法或代入法),选C;
5.函数f(x)的对称轴为2,结合其单调性,选A;
6.从反面考虑,注意应用特例,选B;
7.设tan=x (x>0),则+=,解出x=2,再用万能公式,选A;
8.利用是关于n的一次函数,设S=S=m,=x,则(,p)、(,q)、
(x,p+q)在同一直线上,由两点斜率相等解得x=0,则答案:0;
9.设cosx=t,t∈[-1,1],则a=t-t-1∈[-,1],所以答案:[-,1];
10.设高h,由体积解出h=2,答案:24;
11.设长x,则宽,造价y=4×120+4x×80+×80≥1760,答案:1760。
12.运用条件知:=2,且
==16
13.依题意可知,从而可知,所以有
,又为正整数,取,则
,所以,从而,所以,又,所以,因此有最小值为。
下面可证时,,从而,所以, 又,所以,所以,综上可得:的最小值为11。
14.分析:这是有关函数定义域、值域的问题,题目是逆向给出的,解好本题要运用复合函数,把f(x)分解为u=ax+2x+1和y=lgu 并结合其图象性质求解.
切实数x恒成立. a=0或a<0不合题意,
解得a>1.
当a<0时不合题意; a=0时,u=2x+1,u能取遍一切正实数;
a>0时,其判别式Δ=22-4×a×1≥0,解得0<a≤1.
所以当0≤a≤1时f(x)的值域是R.
15.分析:此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。
解:问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,设f(m)=(x-1)m-(2x-1), 则
解得x∈(,)
说明 本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。
一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题。
16.分析: ①问利用公式a与S建立不等式,容易求解d的范围;②问利用S是n的二次函数,将S中哪一个值最大,变成求二次函数中n为何值时S取最大值的函数最值问题。
解:① 由a=a+2d=12,得到a=12-2d,所以
S=12a+66d=12(12-2d)+66d=144+42d>0,
S=13a+78d=13(12-2d)+78d=156+52d<0。
解得:-
② S=na+n(n1-1)d=n(12-2d)+n(n-1)d
=[n-(5-)]-[(5-)]
因为d<0,故[n-(5-)]最小时,S最大。由-
说明: 数列的通项公式及前n项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析或用函数方法来解决数列问题。也可以利用方程的思想,设出未知的量,建立等式关系即方程,将问题进行算式化,从而简洁明快。由次可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性。
本题的另一种思路是寻求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。
17.分析:异面直线PB和AC的距离可看成求直线PB上任意一点到AC的距离的最小值,从而设定变量,建立目标函数而求函数最小值。
P
M
A H B
D C
解:在PB上任取一点M,作MD⊥AC于D,MH⊥AB于H,
设MH=x,则MH⊥平面ABC,AC⊥HD 。
∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+
即当x=时,MD取最小值为两异面直线的距离。
说明:本题巧在将立体几何中“异面直线的距离”变成“求异面直线上两点之间距离的最小值”,并设立合适的变量将问题变成代数中的“函数问题”。一般地,对于求最大值、最小值的实际问题,先将文字说明转化成数学语言后,再建立数学模型和函数关系式,然后利用函数性质、重要不等式和有关知识进行解答。比如再现性题组第8题就是典型的例子。
18.分析:已知了一个积式,考虑能否由其它已知得到一个和式,再用方程思想求解。
解: 由A、B、C成等差数列,可得B=60°;
由△ABC中tanA+tanB+tanC=tanA·tanB·tanC,得
tanA+tanC=tanB(tanA·tanC-1)= (1+)
设tanA、tanC是方程x-(+3)x+2+=0的两根,解得x=1,x=2+
设A
由此容易得到a=8,b=4,c=4+4。
说明:本题的解答关键是利用“△ABC中tanA+tanB+tanC=tanA·tanB·tanC”这一条性质得到tanA+tanC,从而设立方程求出tanA和tanC的值,使问题得到解决。
19.分析:当x∈(-∞,1]时f(x)=lg有意义的函数问题,转化为1+2+4a>0在x∈(-∞,1]上恒成立的不等式问题。
解:由题设可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,
即:()+()+a>0在x∈(-∞,1]上恒成立。
设t=(), 则t≥, 又设g(t)=t+t+a,其对称轴为t=-
∴ t+t+a=0在[,+∞)上无实根, 即 g()=()++a>0,得a>-
所以a的取值范围是a>-。
说明:对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。
在解决不等式()+()+a>0在x∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t=(), t≥,则有a=-t-t∈(-∞,-],所以a的取值范围是a>-。其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”。
20.解:f(x)=cossinx-(sinxcos-cosxsin)+(tan-2)sinx-sin
=sincosx+(tan-2)sinx-sin
因为f(x)是偶函数,
所以对任意xR,都有f(-x)=f(x),
即sincos(-x)+(tan-2)sin(-x)-sin=sincosx+(tan-2)sinx-sin,
即(tan-2)sinx=0,
所以tan=2
由
解得或
此时,f(x)=sin(cosx-1).
当sin=时,f(x)=(cosx-1)最大值为0,不合题意最小值为0,舍去;
当sin=时,f(x)=(cosx-1)最小值为0,
当cosx=-1时,f(x)有最大值为,
自变量x的集合为{x|x=2k+,kZ}.
21.解:(1);.,
若上是增函数,则恒成立,即
若上是减函数,则恒成立,这样的不存在.
综上可得:.
(2)(证法一)设,由得,于是有,(1)-(2)得:,化简可得
,,,故,即有.
(证法二)假设,不妨设,由(1)可知在
上单调递增,故,
这与已知矛盾,故原假设不成立,即有.
PAGE
16
点击下载
同课章节目录
点击下载
VIP下载