人教A版数学必修2第九章 统计 综合测试(含解析)

文档属性

名称 人教A版数学必修2第九章 统计 综合测试(含解析)
格式 zip
文件大小 469.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-04-24 12:23:58

文档简介

第九章 统计 综合测试(原卷版)
考试时间120分钟,满分150分.
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是(  )
A.总体是指这箱2 500件包装食品
B.个体是一件包装食品
C.样本是按2%抽取的50件包装食品
D.样本量是50
2.下列两个抽样:
①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.
则应采用的抽样方法依次为(  )
A.简单随机抽样;简单随机抽样 B.分层随机抽样;分层随机抽样
C.分层随机抽样;简单随机抽样 D.简单随机抽样;分层随机抽样
3.某校高一年级15个班参加庆祝建党100周年的合唱比赛,得分如下:85、87、88、89、89、90、91、91、92、93、93、93、94、96、98,则这组数据的40%分位数、90%分位数分别为(  )
A.90.5、96 B.91.5、96
C.92.5、95 D.90、96
4.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是(  )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
5.若样本数据x1,x2,…,x10的方差为2,则数据2x1-1,2x2-1,…,2x10-1的方差为(  )
A.2 B.4
C.8 D.16
6.(2022·云南高一月考)某工厂利用随机数法对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600.从中抽取60个样本,下面提供由随机数表产生的第4行到第6行的随机数:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若从第6行第6列开始向右读取数据,则得到的第6个样本编号是(  )
A.324 B.522
C.535 D.578
7.第24届冬奥会于2022年在北京和张家口市联合举行,冬奥会志愿者的服务工作是冬奥会成功举办的重要保障,在冬奥会志愿者的选拔工作中,某高校承担了志愿者选拔的面试工作,面试成绩满分100分,同学们面试得分的频率分布直方图如图所示,则此次面试中得分的90%分位数是(  )
A.85 B.90
C.86 D.80
8.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则(  )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(  )
A.57.2 B.62.8
C.63.6 D.3.6
10.教育统计学中,为了解某考生的成绩在全体考生成绩中的位置,通常将考生的原始分数转化为标准分数.定义标准分数zi=(xi-)(i=1,2,…,n),其中xi为原始分数,为原始分数的平均数,s为原始分数的标准差.已知某校的一次数学考试,全体考生的平均成绩=115,标准差s=10.8,转化为标准分数后,记平均成绩为m,标准差为σ,则(  )
A.m=115 B.m=0
C.σ=10.8 D.σ=1
11.(2021·新高考Ⅰ卷)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则(  )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
12.为庆祝中国共青团成立100周年,校团委举办了“学团史,知团情”知识竞赛,甲、乙两个组各派7名同学参加竞赛,测试成绩(单位:分,十分制)如图所示,则下列描述正确的有(  )
A.甲、乙两组成绩的极差相等
B.甲、乙两组成绩的平均数相等
C.甲、乙两组成绩的中位数相等
D.甲组成绩的方差大于乙组成绩的方差
三、填空题(本大题共4小题,每小题5分,共20分)
13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):
篮球组 书画组 乐器组
高一 45 30 a
高二 15 10 20
学校要对这三个小组的活动效果进行抽样调查,按小组分层随机抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为____.
14.3月12日是植树节,某地组织青年志愿者进行植树活动,植树的树种及其数量的折线图,如图所示.后期,该地区农业局根据树种采用分层抽样的方法抽取150棵树,请专业人士查看树种的成活情况,则被抽取的梧桐树的棵数为____.
15.(2022·黑龙江哈尔滨三中高二期末)某同学4次三级跳远成绩(单位:米)分别为x,y,11,9,已知这4次成绩的平均数为10,标准差为,则xy的值为____.
16.在对某中学高一年级学生每周体育锻炼时间的调查中,采用随机数法,抽取了男生30人,女生20人.已知男同学每周锻炼时间的平均数为17小时,方差为11;女同学每周锻炼时间的平均数为12小时,方差为16.依据样本数据,估计本校高一年级学生每周体育锻炼时间的方差为____.
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)南京市某报社发起了建党100周年主题征文活动,报社收到了来自社会各界的大量文章,打算从众多文章中选取60篇文章以专栏形式在报纸上发表,其参赛作者年龄集中在[15,65]之间,根据统计结果,作出频率分布直方图如图:
(1)求频率分布直方图中m的值;
(2)为了展示不同年龄作者心中的党的形象,报社按照分层抽样的方法,从这60篇文章中抽出20篇文章,并邀请相应作者参加座谈会.求从年龄在[15,35)的作者中选出参加座谈会的人数;
(3)根据频率分布直方图,求这60位作者年龄的样本平均数(同一组数据用该区间的中点值作代表)和80百分位数(结果保留一位小数).
18.(本小题满分12分)已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.
19.(本小题满分12分)(2022·新高考Ⅱ卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率.
20.(本小题满分12分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组.已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,得到体育成绩的折线图如图所示.
(1)若体育成绩大于或等于70分的学生为“体育良生”,已知该校高一年级有1 000名学生,试估计该校高一年级学生“体育良生”的人数;
(2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分;
(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且a∈[70,80),b∈[80,90),c∈[90,100],当三人的体育成绩方差s2最小时,写出a,b,c的所有可能取值(不要求证明).
21.(本小题满分12分)某校100名学生期中考试化学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生化学成绩的平均分;
(3)若这100名学生化学成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 [50,60) [60,70) [70,80) [80,90)
x∶y 1∶1 2∶1 3∶2 4∶5
22.(本小题满分12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.
(1)若采用随机数法抽样,已知用计算机产生的若干0~9范围内的随机数如下,以第3个数5为起点.从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端,写出样本编号的中位数;
0 6 5 1 2 9 1 6 9 3 5 8 0 5 7 7 0
9 5 1 5 1 2 6 8 7 8 5 8 5 5 4 8 7
6 6 4 7 5 4 7 3 3 2 0 8 1 1 1 2 4
4 9 5 9 2 6 3 1 6 2 9 5 6 2 4 2 9
4 8 2 6 9 9 6 1 6 5 5 3 5 8 3 7 7
8 8 0 7 0 4 2 1 0 5 0 6 7 4 2 3 2
1 7 5 5 8 5 7 4 9 4 4 4 6 7 1 6 9
4 1 4 6 5 5 2 6 8 7 5 8 7 5 9 3 6
2 2 4 1 2 6 7 8 6 3 0 6 5 5 1 3 0
8 2 7 0 1 5 0 1 5 2 9 3 9 3 9 4 3
(2)若采用分层随机抽样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4;样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.第九章 统计 综合测试(解析版)
考试时间120分钟,满分150分.
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是( D )
A.总体是指这箱2 500件包装食品
B.个体是一件包装食品
C.样本是按2%抽取的50件包装食品
D.样本量是50
[解析] 总体是指这箱2 500件包装食品的质量,故A项错误;个体是一件包装食品的质量,故B项错误;样本是按2%抽取的50件包装食品的质量,故C项错误;样本量是50,故D正确.故选D.
2.下列两个抽样:
①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.
则应采用的抽样方法依次为( C )
A.简单随机抽样;简单随机抽样 B.分层随机抽样;分层随机抽样
C.分层随机抽样;简单随机抽样 D.简单随机抽样;分层随机抽样
[解析] ①中商店的规模不同,所以应采用分层随机抽样;②中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.
3.某校高一年级15个班参加庆祝建党100周年的合唱比赛,得分如下:85、87、88、89、89、90、91、91、92、93、93、93、94、96、98,则这组数据的40%分位数、90%分位数分别为( A )
A.90.5、96 B.91.5、96
C.92.5、95 D.90、96
[解析] 将数据从小到大排列可得85、87、88、89、89、90、91、91、92、93、93、93、94、96、98,
由15×40%=6,则40%分位数为=90.5,
由15×90%=13.5,则90%分位数为96.
故选A.
4.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( C )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
[解析] A.低于4.5万元的比率估计为0.02×1+0.04×1=0.06=6%正确.
B.不低于10.5万元的比率估计为(0.04+0.02×3)×1=0.1=10%正确.
C.平均值为:(3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02)×1=7.68万元,不正确.
D.4.5万到8.5万的比率为:0.1×1+0.14×1+0.2×1+0.2×1=0.64.正确.
5.若样本数据x1,x2,…,x10的方差为2,则数据2x1-1,2x2-1,…,2x10-1的方差为( C )
A.2 B.4
C.8 D.16
[解析] 因为样本数据x1,x2,…,x10的方差为2,
则数据2x1-1,2x2-1,…,2x10-1的方差为22×2=8.故选C.
6.(2022·云南高一月考)某工厂利用随机数法对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600.从中抽取60个样本,下面提供由随机数表产生的第4行到第6行的随机数:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若从第6行第6列开始向右读取数据,则得到的第6个样本编号是( D )
A.324 B.522
C.535 D.578
[解析] 从第6行第6列开始向右读取数据,编号内的数据依次为436,535,577,348,522,535,578,324,577,….因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,…,故第6个数据为578.故选D.
7.第24届冬奥会于2022年在北京和张家口市联合举行,冬奥会志愿者的服务工作是冬奥会成功举办的重要保障,在冬奥会志愿者的选拔工作中,某高校承担了志愿者选拔的面试工作,面试成绩满分100分,同学们面试得分的频率分布直方图如图所示,则此次面试中得分的90%分位数是( A )
A.85 B.90
C.86 D.80
[解析] 由图知各组的频率为
分组 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
频率 0.1 0.3 0.4 10a 0.1 10a
所以a=0.005,则第四组[70,80)的频率为0.05,前四组的频率之和为0.85,所以这次面试得分的90%分位数是在第五组内,且为80+10×=85.故选A.
8.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( B )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
[解析] 讲座前中位数为>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,所以D错.故选B.
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( BD )
A.57.2 B.62.8
C.63.6 D.3.6
[解析] 当一组数据中的每个数同时加上一个数后,平均数相应增加,但方差不变,可知新数据的平均数为62.8,方差为3.6.故选BD.
10.教育统计学中,为了解某考生的成绩在全体考生成绩中的位置,通常将考生的原始分数转化为标准分数.定义标准分数zi=(xi-)(i=1,2,…,n),其中xi为原始分数,为原始分数的平均数,s为原始分数的标准差.已知某校的一次数学考试,全体考生的平均成绩=115,标准差s=10.8,转化为标准分数后,记平均成绩为m,标准差为σ,则( BD )
A.m=115 B.m=0
C.σ=10.8 D.σ=1
[解析] 根据平均数与方差公式,得m=i====0,
σ2=·s2=1,
即m=0,σ=1.
故选BD.
11.(2021·新高考Ⅰ卷)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则( CD )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
[解析] A.=;==+c;
B.y中=x中+c;
C.S=(xi-)2;S′=(xi+c)-(+c)2]=S;
D.x的极差为xmax-xmin;y的极差为(xmax+c)-(xmin+c)=xmax-xmin.
故选CD.
12.为庆祝中国共青团成立100周年,校团委举办了“学团史,知团情”知识竞赛,甲、乙两个组各派7名同学参加竞赛,测试成绩(单位:分,十分制)如图所示,则下列描述正确的有( AC )
A.甲、乙两组成绩的极差相等
B.甲、乙两组成绩的平均数相等
C.甲、乙两组成绩的中位数相等
D.甲组成绩的方差大于乙组成绩的方差
[解析] 甲、乙两组成绩的极差都为4,故A正确;
甲组成绩的平均数为=,
乙组成绩的平均数为=,
∴甲组成绩的平均数小于乙组成绩的平均数,故B错误;
甲、乙两组成绩的中位数都为6,故C正确;
甲组成绩的方差为:
×=,
乙组成绩的方差为
×=,
∴甲组成绩的方差小于乙组成绩的方差,故D错误.故选AC.
三、填空题(本大题共4小题,每小题5分,共20分)
13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):
篮球组 书画组 乐器组
高一 45 30 a
高二 15 10 20
学校要对这三个小组的活动效果进行抽样调查,按小组分层随机抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为__30__.
[解析] 由题意知,=,
解得a=30.
14.3月12日是植树节,某地组织青年志愿者进行植树活动,植树的树种及其数量的折线图,如图所示.后期,该地区农业局根据树种采用分层抽样的方法抽取150棵树,请专业人士查看树种的成活情况,则被抽取的梧桐树的棵数为__10__.
[解析] 由分层抽样法,被抽取的梧桐树的棵数为:150×=10.
故答案为10.
15.(2022·黑龙江哈尔滨三中高二期末)某同学4次三级跳远成绩(单位:米)分别为x,y,11,9,已知这4次成绩的平均数为10,标准差为,则xy的值为__97__.
[解析] 数据x,y,11,9的平均数为10,标准差为,则
化简得所以xy=97.
16.在对某中学高一年级学生每周体育锻炼时间的调查中,采用随机数法,抽取了男生30人,女生20人.已知男同学每周锻炼时间的平均数为17小时,方差为11;女同学每周锻炼时间的平均数为12小时,方差为16.依据样本数据,估计本校高一年级学生每周体育锻炼时间的方差为__19__.
[解析] 根据平均数的计算公式,全班的平均数为==15(小时),
由S2=(xi-)2=(xi2-2xi+2)=i2-2i+2=i2-2,
设男同学为x1,x2,…,x30,女同学为y1,y2,…,y20,
则男同学的方差S=(xi-17)2=i2-289=11,从而i2=300×30=9 000,
则女同学的方差S=(yi-12)2=i2-144=16,从而i2=160×20=3 200;
所以全班同学的方差为S2=(zi-15)2=i2-225=(9 000+3 200)-225=19.
故答案为19.
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)南京市某报社发起了建党100周年主题征文活动,报社收到了来自社会各界的大量文章,打算从众多文章中选取60篇文章以专栏形式在报纸上发表,其参赛作者年龄集中在[15,65]之间,根据统计结果,作出频率分布直方图如图:
(1)求频率分布直方图中m的值;
(2)为了展示不同年龄作者心中的党的形象,报社按照分层抽样的方法,从这60篇文章中抽出20篇文章,并邀请相应作者参加座谈会.求从年龄在[15,35)的作者中选出参加座谈会的人数;
(3)根据频率分布直方图,求这60位作者年龄的样本平均数(同一组数据用该区间的中点值作代表)和80百分位数(结果保留一位小数).
[解析] (1)∵10×(0.01+0.015+m+0.03+0.01)=1,∴m=0.035.
(2)应从[15,35)选出参加座谈会的人数为:20×(0.01+0.015)×10=5人.
(3)由题意得:=(20×0.01+30×0.015+40×0.035+50×0.03+60×0.01)×10=41.5;
假设第80百分位数为t,则(0.01+0.015+0.035)×10+(t-45)×0.03=0.8,
解得:t≈51.7,即第80百分位数为51.7.
18.(本小题满分12分)已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.
[解析] 由于数据-1,0,4,x,7,14的中位数为5,
所以=5,解得x=6.
设这组数据的平均数为,方差为s2,
由题意得
=×(-1+0+4+6+7+14)=5,
s2=×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=.
19.(本小题满分12分)(2022·新高考Ⅱ卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率.
[解析] (1)平均年龄=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁).
(2)设A={一人患这种疾病的年龄在区间[20,70)},所以
P(A)=1-P()=1-(0.001+0.002+0.006+0.002)×10=1-0.11=0.89.
20.(本小题满分12分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组.已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,得到体育成绩的折线图如图所示.
(1)若体育成绩大于或等于70分的学生为“体育良生”,已知该校高一年级有1 000名学生,试估计该校高一年级学生“体育良生”的人数;
(2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分;
(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且a∈[70,80),b∈[80,90),c∈[90,100],当三人的体育成绩方差s2最小时,写出a,b,c的所有可能取值(不要求证明).
[解析] (1)由折线图得体育成绩大于或等于70分的学生有14+3+13=30(人),∴估计该校高一年级学生“体育良生”的人数为1 000×=750.
(2)用样本估计总体的思想,估计该校高一年级学生达标测试的平均分为=(45×2+55×6+65×2+75×14+85×3+95×13)=77.25(分).
(3)∵甲、乙、丙三人的体育成绩分别为a,b,c,且a∈[70,80),b∈[80,90),c∈[90,100],其中a,b,c∈N,
∴当三人的体育成绩方差s2最小时,a,b,c的所有可能取值为79,84,90或79,85,90.
21.(本小题满分12分)某校100名学生期中考试化学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生化学成绩的平均分;
(3)若这100名学生化学成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 [50,60) [60,70) [70,80) [80,90)
x∶y 1∶1 2∶1 3∶2 4∶5
[解析] (1)依题意得,10×(2a+0.02+0.03+0.04)=1,解得a=0.005.
(2)这100名学生化学成绩的平均分为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).
(3)数学成绩在[50,60)的人数为100×0.05=5,数学成绩在[60,70)的人数为100×0.4×=20,
数学成绩在[70,80)的人数为100×0.3×=20,
数学成绩在[80,90)的人数为100×0.2×=25.
所以数学成绩在[50,90)之外的人数为100-5-20-20-25=30.
22.(本小题满分12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.
(1)若采用随机数法抽样,已知用计算机产生的若干0~9范围内的随机数如下,以第3个数5为起点.从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端,写出样本编号的中位数;
0 6 5 1 2 9 1 6 9 3 5 8 0 5 7 7 0
9 5 1 5 1 2 6 8 7 8 5 8 5 5 4 8 7
6 6 4 7 5 4 7 3 3 2 0 8 1 1 1 2 4
4 9 5 9 2 6 3 1 6 2 9 5 6 2 4 2 9
4 8 2 6 9 9 6 1 6 5 5 3 5 8 3 7 7
8 8 0 7 0 4 2 1 0 5 0 6 7 4 2 3 2
1 7 5 5 8 5 7 4 9 4 4 4 6 7 1 6 9
4 1 4 6 5 5 2 6 8 7 5 8 7 5 9 3 6
2 2 4 1 2 6 7 8 6 3 0 6 5 5 1 3 0
8 2 7 0 1 5 0 1 5 2 9 3 9 3 9 4 3
(2)若采用分层随机抽样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4;样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.
[解析] (1)根据题意,读出的编号依次是:512,916(超界),935(超界),805,770,951(超界),512(重复),687,858,554,876,647,547,332.
将有效的编号从小到大排列,得
332,512,547,554,647,687,770,805,858,876,
所以中位数为×(647+687)=667.
(2)记样本中8个A题目的成绩分别为x1,x2,…,x8,2个B题目的成绩分别为y1,y2.
由题意可知i=8×7=56,(xi-7)2=8×4=32,
i=16,(yi-8)2=2×1=2,
故样本平均数为=×(i+i)=×(56+16)=7.2;
样本方差为
s2=×[(xi-7.2)2+(yi-7.2)2]
=×{(xi-7)-0.2]2+(yi-8)+0.8]2}
=×[(xi-7)2-0.4(xi-7)+8×0.22+(yi-8)2+1.6(yi-8)+2×0.82]
=(32-0+0.32+2+0+1.28)
=3.56.
所以估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.