九年级第一学期反比例函数综合题训练(含解析)

文档属性

名称 九年级第一学期反比例函数综合题训练(含解析)
格式 doc
文件大小 139.3KB
资源类型 试卷
版本资源 鲁教版
科目 数学
更新时间 2023-04-25 18:17:06

图片预览

文档简介

中小学教育资源及组卷应用平台
反比例函数综合题训练
1. 已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
2. 如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
3. 如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
4.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).
(1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.
5. 如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式;
(2)求直线EB的解析式;
(3)求S△OEB.
6. 如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
反比例函数综合题训练和答案解析
1.分析(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程 PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P的坐标.
解答解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1;
(2)设BD与x轴交于点E.
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=.
∵三角形PBD的面积是8,
∴BD PE=8,
∴ PE=8,
∴PE=4m,
∵E(2m,0),点P在x轴上,
∴点P坐标为(﹣2m,0)或(6m,0).
2.分析(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;
(2)联立解析式,可求交点坐标;
(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.
解答解:(1)由已知,OA=6,OB=12,OD=4
∵CD⊥x轴
∴OB∥CD
∴△ABO∽△ACD


∴CD=20
∴点C坐标为(﹣4,20)
∴n=xy=﹣80
∴反比例函数解析式为:y=﹣
把点A(6,0),B(0,12)代入y=kx+b得:
解得:
∴一次函数解析式为:y=﹣2x+12
(2)当﹣=﹣2x+12时,解得
x1=10,x2=﹣4
当x=10时,y=﹣8
∴点E坐标为(10,﹣8)
∴S△CDE=S△CDA+S△EDA=
(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象
∴由图象得,x≥10,或﹣4≤x<0
3.分析(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
解答解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,不等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,
∴y2=x+,
令y=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=,
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
4.分析(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;
(2)利用△AOP的面积减去△AOQ的面积.
解答解:(1)反比例函数y=( m≠0)的图象经过点(1,4),
∴,解得m=4,故反比例函数的表达式为,
一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),
∴,解得,
∴一次函数的表达式y=﹣x﹣5;
(2)由,解得或,
∴点P(﹣1,﹣4),
在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),
S△OPQ=S△OPA﹣S△OAQ==7.5.
5.分析(1)利用待定系数法求反比例函数的解析式;
(2)根据点A的坐标可求得直线OA的解析式,联立直线OA和反比例函数解析式列方程组可得点E的坐标,再利用待定系数法求BE的解析式;
(3)根据三角形的面积公式计算即可.
解答解:(1)∵A点的坐标为(a,6),AB⊥x轴,
∴AB=6,
∵cos∠OAB═=,
∴,
∴OA=10,
由勾股定理得:OB=8,
∴A(8,6),
∴D(8,),
∵点D在反比例函数的图象上,
∴k=8×=12,
∴反比例函数的解析式为:y=;
(2)设直线OA的解析式为:y=bx,
∵A(8,6),
∴8b=6,b=,
∴直线OA的解析式为:y=x,
则,
x=±4,
∴E(﹣4,﹣3),
设直线BE的解式为:y=mx+n,
把B(8,0),E(﹣4,﹣3)代入得:,
解得:,
∴直线BE的解式为:y=x﹣2;
(3)S△OEB=OB |yE|=×8×3=12.
6.分析(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
解答解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,则PA+PB最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值A′B==.
设直线A′B的解析式为y=mx+n,
则,解得,
∴直线A′B的解析式为y=﹣x+,
∴x=0时,y=,
∴P点坐标为(0,).
21世纪教育网(www.21cnjy.com)