课件15张PPT。22.3 实际问题与一元二次方程(第1课时) 有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个? 开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_______人患了流感;列方程1+x+x(1+x)=121解方程,得x1=___________, x2=______________. 平均一个人传染了__________个人. 第二轮传染中,这些人中的每个人又传染了x个人,用代数式示,第二轮后公有_______人患了流感. 分析:设每轮传染中平均一个人传染了x个人.10-1210探究1如果按照这样的传染速度,三轮传染后有多少人患流感?平均每人传染10人,第二轮传染的人数是110人,第三轮为10×110=1100,三轮共传染了1+10+110+1100=1221人三轮传染的总人数为: ( 1 + x ) + x ( 1 + x ) + x · x ( 1 + x )= ( 1+ 10) + 10 ( 1+10 ) + 10×10( 1+ 10)= 11+110+1100=1221两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?分析:
容易求出,甲种药品成本的年平均下降额为:_________________________
乙种药品成本的年平均下降额为:__________________________________
显然,乙种药品成本的年平均下降额较大.但是年平均下降额(元)不等同于年平均下降率(百分数).(5000-3000)÷2=1000(元)(6000-3600)÷2=1200(元)探究2设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2元,于是有5000(1-x)2=3000解方程,得:x1≈0.225,x2≈1.775根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%6000 ( 1-y )2 = 3600设乙种药品的下降率为y列方程解方程,得y1≈0.225,y2≈-1.775根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%甲乙两种药品成本的平均下降率相同,都是22.5%乙种药品成本的年平均下降率是多少?请比较两种药品成本的年平均下降率.经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?得到的结论就是:甲乙两种药品的平均下降率相同成本下降额较大的药品,它的成本下降率不一定较大.不但要考虑它们的平均下降额,而且要考虑它们的平均下降率.小结 类似地 这种增长率的问题在实际生活普遍存在,有一定的模式若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为:其中增长取+,降低取-例.(2003年,广州市)2003年2月27日《广州日报》报道:2002年底广州市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A级标准.因此,市政府决定加快绿化建设,力争到2004年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则广州市自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)解:设广州市总面积为1,广州市自然保护区面积年平均增长率为x,根据题意,得
1×4.65% (1+x)2=1×8% .
(1+x)2≈1.720.
∴ 1+x≈±1.312.
x1 ≈ 0.312=31.2%,x2 ≈-2.312(不合题意,舍去)
答:要达到最低目标,自然保护区面积的年平均增长率应为31.2%.练习:1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程( )
A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程
为 .B练习:3.美化城市,改善人们的居住环境已成为城市建设的一项重要内容。某城市近几年来通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示)。(1)根据图中所提供的信息回答下列问题:2001年底的绿地面积为 公顷,比2000年底增加了 公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是 ____________年;
(2)为满足城市发展的需要,计划到2003年底使城区绿地面积达到72.6公顷,试求2002年,2003年两年绿地面积的年平均增长率。6042000解:设2002年,2003年两年绿地面积的年平均增长率为x,根据题意,得
60 (1+x)2=72.6 .
(1+x)2=1.21.
∴1+x=±1.1.
∴ x1 = 0.1=10%,
x2 =-2.1(不合题意,舍去)
答: 2002年,2003年两年绿地面积的年平均增长率为10%.
练习:4.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:
(1)填写完成下表:
这20个家庭的年平均收入为______万元;(2)样本中的中位数是______万元,众数是______万元;(3)在平均数、中位数两数中,______更能反映这个地区家庭的年收入水平.
(4)要想这20个家庭的年平均
收入在2年后达到2.5万元,
则每年的平均增长率是多少?112345311.61.21.3中位数解:设年平均增长率为x,根据题意,得1.6 (1+x)2=2.5.
(1+x)2= .∴1+x=±1.25.
∴ x1 = 0.25=25%,x2 =-2.25(不合题意,舍去)
答:每年的年平均增长率为25%.练习:5、某农户1997年承包荒山若干亩,投资7800元改造后种果树2000棵,其成活率为90%。在今年(注:今年指2000年)夏季全部结果时,随意摘下10棵果树的水果,称得重量如下:(单位:千克)
8,9,12,13,8,9,11,10,12,8
⑴根据样本平均数估计该农户今年水果的总产量是多少?⑵此水果在市场每千克售1.3元,在水果园每千克售1.1元,该农户用农用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元.若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式合理?为什么?⑶该农户加强果园管理,力争到2002年三年合计纯收入达到57000元,求2001年、2002年平均每年的增长率是多少?(纯收入=总收入-总支出)解:(1)样本平均数为∴总产量=2000×90%×10=18000(千克)(2)在果园出售的利润是1.1×18000-7800=12000(元)在市场出售的利润是
1.3×18000-7800-(18000÷1000)×8×25=12000(元)所以两种出售方式相同,选择哪一种都可以;(3)设2001年、2002年平均每年的增长率是x,得∴ x1 = 0. 50=50%,x2 =-3.5(不合题意,舍去) 答: 2001年、2002年平均每年的增长率是50%.小结1、平均增长(降低)率公式2、注意:
(1)1与x的位置不要调换
(2)解这类问题列出的方程一般
用 直接开平方法1.(P53-7)青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.2.(P58-8)某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少(精确到0.01%)?课后作业课件10张PPT。22.3 实际问题与一元二次方程(第3课时)一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急 刹车后汽车又滑行25m后停车.
(1)从刹车到停车用了多少时间?
(2)从刹车到停车平均每秒车速减少多少?
(3)刹车后汽车滑行到15m时约用了多少时间?分析: (1)刚刹车时时速还是20m/s,以后逐渐减少,停车时时速为0.因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为=(20+0)÷2=10m/s,那么根据:路程=速度×时间,便可求出所求的时间.解:(1)从刹车到停车所用的路程是25m;
从刹车到停车的平均车速是=(20+0)÷2=10(m/s)
那么从刹车到停车所用的时间是25÷10=2.5(s)探究4分析:(2)很明显,刚要刹车时车速为20m/s,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可. 解:(2)从刹车到停车车速的减少值是20-0=20
从刹车到停车每秒平均车速减少值是
20÷2.5=8(m/s) 一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急 刹车后汽车又滑行25m后停车.
(2)从刹车到停车平均每秒车速减少多少?分析:(3)设刹车后汽车滑行到15m时约用了x秒.
由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m的平均速度,再根据:路程=速度×时间,便可求出x的值.解: (3)设刹车后汽车滑行到15m时约用了xs,这时车速为(20-8x)m/s,则这段路程内的平均车速为〔20+(20-8x)〕÷2=(20-4x)m/s, 所以x(20-4x)=15
整理得:4x2-20x+15=0 解方程:得x=
x1≈4.08(不合,舍去),x2≈0.9(s)
答:刹车后汽车行驶到15m时约用0.9s. 一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急 刹车后汽车又滑行25m后停车.
(3)刹车后汽车滑行到15m时约用了多少时间?(1)同上题,求刹车后汽车行驶10m时约用了多少时间.(精确到0.1s)
(2)刹车后汽车行驶到20m时约用了多少时间.(精确到0.1s)1.一个小球以5m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动10m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用了多少时间(精确到0.1s)?练习:解:(1)小球滚动的平均速度=(5+0)÷2=2.5(m/s)
∴ 小球滚动的时间:10÷2.5=4(s) (2)平均每秒小球的运动速度减少为(5-0)÷2.5=2(m/s) (3)设小球滚动到5m时约用了xs,这时速度为(5-2x)m/s,
则这段路程内的平均速度为〔5+(5-2x)〕÷2=(5-x)m/s,
所以x(5-x)=5
整理得:x2-5x+5=0
解方程:得x1≈3.6(不合,舍去),x2≈1.4(s)
答:刹车后汽车行驶到5m时约用1.4s.练习:如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,
军舰在由B到C的途中与补给船相遇于E
处,那么相遇时补给船航行了多少海
里?(结果精确到0.1海里)分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长.(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.小结本节课应掌握:
运用路程=速度×时间,
建立一元二次方程的数学模型,
并解决一些实际问题.课件15张PPT。22.3 实际问题与一元二次方程(第2课时)一、复习引入 1.直角三角形的面积公式是什么?
一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?
长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm
依题意得解得 故上下边衬的宽度为:
左右边衬的宽度为:探究3 要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7
解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm
依题意得解方程得(以下同学们自己完成)方程的哪个根合乎实际意义?
为什么?1. (2004年,镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.解: (1)方案1:长为 米,宽为7米;方案2:长为16米,宽为4米;方案3:长=宽=8米;注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.x(16-x)=63+2, x2-16x+65=0,∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米2、用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.解:设这个矩形的长为xcm,则宽为 cm,即x2-10x+30=0这里a=1,b=-10,c=30,∴此方程无解.∴用20cm长的铁丝不能折成面积为30cm2的矩形.3、如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎么设计?解:设苗圃的一边长为xm,则答:应围成一个边长为9米的正方形.4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.解:(1)如图,设道路的宽为x米,则:其中的 x=25超出了原矩形的宽,应舍去.∴图(1)中道路的宽为1米.则横向的路面面积为 ,分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、 如图,设道路的宽为x米,32x 米2纵向的路面面积为 。20x 米2注意:这两个面积的重叠部分是 x2 米所列的方程是不是?所以正确的方程是:化简得,其中的 x=50超出了原矩形的长和宽,应舍去.
取x=2时,道路总面积为: =100 (米2)答:所求道路的宽为2米。解法二:
我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)横向路面:______________如图,设路宽为x米,32x米2纵向路面面积为________20x米2草坪矩形的长(横向)为________草坪矩形的宽(纵向)为_________相等关系是:草坪长×草坪宽=540米2(20-x)米(32-x)米即化简得:再往下的计算、格式书写与解法1相同。这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求. 列一元二次方程解应用题的步骤与
列一元一次方程解应用题的步骤类似,
即审、设、列、解、检、答.小结