课件10张PPT。解直角三角形(3)问题回顾 在RtΔABC中,若∠C =900, 问题1. 两锐角∠A与∠B有什么关系?答: ∠A+ ∠B= 900.问题2. 三边a、b、c的关系如何?答:a2+b2 =c2.问题3. ∠B与边的关系是什么?答:例1、如图, 一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米) 探索新知坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有i= =tan a
显然,坡度越大,坡角a就越大,坡面就越陡.
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.
如图19.4.5,坡面的铅垂高度(h)和水平长度(l)
的比叫做坡面坡度(或坡比).记作i,即i= .
例2.如图是某公路路基的设计简图,等腰梯形ABCD表示它的横断面,原计划设计的坡角为A=22°37′,坡长AD=6. 5米,现考虑到在短期内车流量会增加,需增加路面宽度,故改变设计方案,将图中1,2两部分分别补到3,4的位置,使横断面EFGH为等腰梯形,重新设计后路基的坡角为32°,全部工程的用土量不变,问:路面宽将增加多少?
(选用数据:sin22°37′≈ ,cos22°37′ ≈ ,
tan 22°37′ ≈ ,
tan 32° ≈ )MN试一试 1.两幢大楼相距110米,从甲楼顶部看乙楼顶部的仰角为26°,如果甲楼高35米,那么乙楼的高为多少米?(精确到1米) 2.一艘船向东航行,上午8时到达B处,看到有一灯塔在它的北偏东59°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正北方向.求这艘船航行的速度.(精确到1海里/时)答案:乙楼高约89米答案:这艘船航行的速度约31 海里/时小结: 1.在解直角三角形及应用时经常接触到的一些概念
2.实际问题向数学模型的转化
3.解直角三角形的边角关系
由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴侵袭。近日,A城气象局测得沙尘暴中心在A城的正南方向240km的B处,以每小时12km的速度向北偏东30°方向移动,距沙尘暴中心150km的范围为受影响区域。附加题(1)A城是否受到这次沙尘暴的影响,为什么?(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?解(1):过A作AC⊥BM,垂足为C,在Rt△ABC中, ∠B = 30°, ∵AC = 120 < 150∴A城受到沙尘暴影响 由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴侵袭。近日,A城气象局测得沙尘暴中心在A城的正南方向240km的B处,以每小时12km的速度向北偏东30°方向移动,距沙尘暴中心150km的范围为受影响区域。附加题(1)A城是否受到这次沙尘暴的影响,为什么?(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?解(2):设点E、F是以A为圆心,150km为半径的圆与BM的交点,由题意得:∴EF = 2CE = 2 x 90 = 180∴A城受到沙尘暴影响的时间为180÷12 = 15小时答:A城将受到这次沙尘暴影响,影响的时间为15小时。作业 1.教科书P 116. 习题 1. 2. 见作业本
3.教科书P 120 习题 B组.