专题18 解直角三角形-2023年中考一轮复习【高频考点】(讲义+练习)(浙江专用)(解析版)

文档属性

名称 专题18 解直角三角形-2023年中考一轮复习【高频考点】(讲义+练习)(浙江专用)(解析版)
格式 zip
文件大小 17.8MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-04-28 21:30:24

文档简介

中小学教育资源及组卷应用平台
专题18 解直角三角形
【考情预测】
该板块主要考查锐角三角函数的定义和特殊角的三角函数,尤其是应用主要在综合题中考查,是考查重点,每年都有一道三角函数的综合题,看似考查解题的综合能力,实质是基本的定义和应用.有时比较简单,有时难点较大不易得分,分值为12分左右。预计2023年浙江各地中考还将以选题和综合题的形式出现,在牢固掌握定义的同时,一定要理解基本的方法,利用辅助线构造直角三角形,是得分的关键。
【考点梳理】
1、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,
正弦:sinA=;余弦:cosA=;正切:tanA=.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
2、特殊角的三角函数值
α sinα cosα tanα
30°
45° 1
60°
3、解直角三角形
1)在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2)解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2; 2)两锐角关系:∠A+∠B=90°;3)边与角关系:sinA=cosB=,cosA=sinB=,tanA=; 4)sin2A+cos2A=1.
3)科学选择解直角三角形的方法口诀:
已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;
已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;
已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.
4、解直角三角形的应用
1)仰角和俯角
仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.
俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.
2)坡度和坡角
坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=.
坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.
3)方向角(或方位角)
指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.
4).解直角三角形中“双直角三角形”的基本模型:
解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.
5).解直角三角形实际应用的一般步骤
(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;
(3)选择合适的边角关系式,使运算简便、准确;
(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.
【重难点突破】
考点1. 三角函数的定义
【解题技巧】
1)分清直角三角形中的斜边与直角边. 2)正确地表示出直角三角形的三边长,常设某条直角边长为k(有时也可设为1),在求三角函数值的过程中约去k. 3)正确应用勾股定理求第三边长. 4)应用锐角三角函数定义,求出三角函数值.
【典例精析】
例1.(2022·湖南益阳·统考中考真题)如图,在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.
【答案】
【分析】根据三角函数的定义即可得到cosB=sinA=.
【详解】解:在Rt△ABC中,∠C=90°,∵sinA==,∴cosB==.故答案为:.
【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A+∠B=90°,则sinA=cosB,cosA=sinB.熟知相关定义是解题关键.
例2.(2022·青海西宁·统考中考真题)在Rt△ABC中,∠C=90°,AC=1,BC=,则cosA=________.
【答案】##
【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.
【详解】解:在Rt△ACB中,∠C=90°,AC=1,BC=,
∴AB=,∴cosA=,故答案为:.
【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义.
【变式训练】
变式1.(2022·江苏扬州·中考真题)在中,,分别为的对边,若,则的值为__________.
【答案】
【详解】解:如图所示:
在中,由勾股定理可知:,,,
, ,,,即:,求出或(舍去),
在中:,故答案为:.
【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在中, ,,.
变式2.(2022·山东滨州·中考真题)在Rt△ABC中,∠C=90°,AC=5,BC=12,则sinA=______.
【答案】
【分析】据题意画出图形,进而用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.
【详解】解:如图所示:
∵∠C=90°,AC=5,BC=12,∴AB==13,∴sinA=. 故答案为:.
【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB的长是解题的关键.
变式3.(2022·浙江湖州·中考真题)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sinA的值.
【答案】AC=4,sinA=
【分析】根据勾股定理求出AC,根据正弦的定义计算,得到答案.
【详解】解:∵∠C=Rt∠,AB=5,BC=3,∴..
【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.
考点2. 利用特殊角的三角函数值求值
【解题技巧】
锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.
【典例精析】
例1.(2022·天津·中考真题)的值等于( )
A.2 B.1 C. D.
【答案】B
【分析】根据三角函数定义:正切=对边与邻边之比,进行求解.
【详解】作一个直角三角形,∠C=90°,∠A=45°,如图:
∴∠B=90°-45°=45°,∴△ABC是等腰三角形,AC=BC,
∴根据正切定义,,∵∠A=45°,∴,故选 B.
【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键.
例2.(2023·山东·中考模拟)(1)计算:;
(2)计算:.
【答案】(1)2;(2)0
【分析】(1)首先计算特殊角的三角函数值、乘方、开方、零指数幂,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可;(2)首先计算乘方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.
【详解】解:(1)


=2;
(2)


=0.
【点睛】实数的运算、零指数幂、特殊角的三角函数值,熟练掌握运算法则和特殊角的三角值是解题关键.
【变式训练】
变式1.(2022·广东·中考真题)sin30°的值为_____.
【答案】
【详解】根据特殊角的三角函数值计算即可:sin30°=.
变式2.(2021·山东东营市·中考真题)如图,在中,,,,若用科学计算器求AC的长,则下列按键顺序正确的是( )
A. B. C. D.
【答案】D
【分析】根据正切函数的定义,可得,根据计算器的应用,可得答案.
【详解】解:由,得:,故选:D.
【点睛】本题主要考查了计算器,利用锐角三角函数、计算器的应用,熟练应用计算器是解题关键.
变式3.(2022·浙江·二模)计算:sin30° tan45°﹣( =__________.
【答案】
【分析】首先根据,tan45°=1,,再计算即可.
【详解】原式===.
【点睛】本题考查实数的计算,掌握特殊角的三角函数值和非零数的零次幂的计算方法是解题的关键.
考点3. 复杂几何图形中的三角函数问题
【典例精析】
例1.(2022·浙江丽水·中考真题)如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是( )
A.3 B. C. D.
【答案】B
【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=,即可得到FG的长;
【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,
由题意可知,AB=BC=4,E是BC的中点,∴BE=2,
又∵,∴BH=1,即H是BE的中点,∴AB=AE=4,
又∵AF是∠DAE的角平分线,AD∥FG,∴∠FAG=∠AFG,即AG=FG,
又∵PF∥AD,AP∥DF,∴PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,
∵PF∥BC,∴∠AGP=∠AEB=∠B,∴cos∠AGP===,解得x=;故选B.
【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.
例2.(2022·湖北荆州·中考真题)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,,连接AC,过点O作交AC的延长线于P.若,则的值是( )
A. B. C. D.3
【答案】C
【分析】由可知,OP与x轴的夹角为45°,又因为,则为等腰直角形,设OC=x,OB=2x,用勾股定理求其他线段进而求解.
【详解】∵P点坐标为(1,1),则OP与x轴正方向的夹角为45°,
又∵,则∠BAO=45°,为等腰直角形,∴OA=OB,
设OC=x,则OB=2OC=2x,则OB=OA=3x,∴.
【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P点坐标推出特殊角是解题的关键.
【变式训练】
变式1.(2022·湖北武汉·中考真题)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C都在格点上,∠O=60°,则tan∠ABC=( )
A. B. C. D.
【答案】C
【分析】证明四边形ADBC为菱形,求得∠ABC=30°,利用特殊角的三角函数值即可求解.
【详解】解:连接AD,如图:
∵网格是有一个角60°为菱形,∴△AOD、△BCE、△BCD、△ACD都是等边三角形,
∴AD= BD= BC= AC,∴四边形ADBC为菱形,且∠DBC=60°,∴∠ABD=∠ABC=30°,
∴tan∠ABC= tan30°=.故选:C.
【点睛】本题考查菱形的判定和性质,特殊角的三角函数值,证明四边形ADBC为菱形是解题的关键.
变式2.(2022·四川乐山·中考真题)如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为( )
A. B.3 C. D.2
【答案】C
【分析】先根据锐角三角函数值求出,再由勾股定理求出过点D作于点E,依据三角函数值可得从而得,再由得AE=2,DE=1,由勾股定理得AD=,从而可求出CD.
【详解】解:在中,,,∴∴
由勾股定理得, 过点D作于点E,如图,
∵,,∴
∴ ∴ ∴
∵ ∴ ∴ ∴,
在中, ∴
∵ ∴故选:C
【点睛】本题考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE的长是解答本题的关键.
变式3.(2022·浙江绍兴·中考真题)如图,,点在射线上的动点,连接,作,,动点在延长线上,,连接,,当,时,的长是______.
【答案】5或
【分析】过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,设BN=x,则CN =3x,由△ACN≌△CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得△NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt△CNE中由勾股定理建立方程求得x,进而可得BE;
【详解】解:如图,过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,
设BN=x,则CN=BN tan∠CBN=3x,
∵△CAD,△ECD都是等腰直角三角形,∴CA=CD,EC=ED,∠EDC=45°,
∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,
在△ACN和△CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,
∴△ACN≌△CDM(AAS),∴AN=CM=10+x,CN=DM=3x,
∵∠CMD=∠CED=90°,∴点C、M、D、E四点共圆,∴∠CME=∠CDE=45°,
∵∠ENM=90°,∴△NME是等腰直角三角形,∴NE=NM=CM-CN=10-2x,
Rt△ANC中,AC=,Rt△ECD中,CD=AC,CE=CD,
Rt△CNE中,CE2=CN2+NE2,∴,
,,x=5或x=,
∵BE=BN+NE=x+10-2x=10-x,∴BE=5或BE=;故答案为:5或;
【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.
考点4.解直角三角形的应用—坡角(堤坝)问题
【解题技巧】解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.
【典例精析】
例1.(2022·贵州毕节·中考真题)如图,某地修建一座高的天桥,已知天桥斜面的坡度为,则斜坡的长度为(  )
A. B. C. D.
【答案】A
【分析】直接利用坡度的定义得出的长,再利用勾股定理得出的长.
【详解】∵,,∴,解得:,
则.故选:A.
【点睛】本题考查解直角三角形和勾股定理的实际应用.由坡度的定义得出AC的长是解答本题的关键.
例2.(2022·湖北十堰·中考真题)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC长为m,则大树AB的高为( )
A. B. C. D.
【答案】A
【分析】应充分利用所给的α和45°在树的位置构造直角三角形,进而利用三角函数求解.
【详解】解:如图,过点C作水平线与AB的延长线交于点D,则AD⊥CD,
∴∠BCD=α,∠ACD=45°.在Rt△CDB中,CD=mcosα,BD=msinα,
在Rt△CDA中,AD=CD×tan45°=m×cosα×tan45°=mcosα,
∴AB=AD-BD=(mcosα-msinα)=m(cosα-sinα).故选:A.
【点睛】本题考查锐角三角函数的应用.需注意构造直角三角形是常用的辅助线方法,另外,利用三角函数时要注意各边相对.
例3.(2022·山东烟台·中考真题)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB=0.75m,斜坡AC的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED=2.55m.为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)
(参考数据表)
计算器按键顺序 计算结果(已精确到0.001)
11.310
0.003
14.744
0.005
【答案】不得小于11度
【分析】根据题意可得DF=AB=0.15米,然后根据斜坡AC的坡比为1:2,可求出BC,CD的长,从而求出EB的长,最后在Rt△AEB中,利用锐角三角函数的定义进行计算即可解答.
【详解】解:如图:
由题意得:DF=AB=0.15(米),∵斜坡AC的坡比为1:2,∴=,=,
∴BC=2AB=1.5(米),CD=2DF=0.3(米),
∵ED=2.55米,∴EB=ED+BC﹣CD=2.55+1.5﹣0.3=3.75(米),
在Rt△AEB中,tan∠AEB===,查表可得,∠AEB≈11.310°≈11°,
∴为防止通道遮盖井盖,所铺设通道的坡角不得小于11度.
【点睛】本题考查了解直角三角形的应用﹣坡度坡角问题,熟练掌握坡比是解题的关键.
【变式训练】
变式1.(2022·黑龙江牡丹江·中考真题)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高(   )
A.(600-250)米 B.(600-250)米 C.(350+350)米 D.500米
【答案】B
【详解】解:如答图,∵BE:AE=5:12,∴可设BE=5k,AE=12k,
∵AB=1300米,∴在Rt△ABE中,由勾股定理,得AE2+BE2=AB2,
即,解得k=100.∴AE=1200米,BE=500米.
设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.
∴1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750.
∴CD=DF+CF=600﹣250(米).∴山高CD为(600﹣250)米.故选B.
【点睛】本题考查解直角三角形的应用(仰角俯角和坡度坡角问题);勾股定理;锐角三角函数定义;特殊角的三角函数值;待定系数法的应用.
变式2.(2022·山东泰安·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点C处,然后沿斜坡前行到达最佳测量点D处,在点D处测得塔顶A的仰角为,已知斜坡的斜面坡度,且点A,B,C,D,在同一平面内,小明同学测得古塔的高度是___________.
【答案】
【分析】过D作DF⊥BC于F,DH⊥AB于H,设DF=x m,CF=x m,求出x=10,则BH=DF=+30,CF=m,DH=BF,再求出AH=,即可求解.
【详解】解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,
∵斜坡的斜面坡度i=1:,∴,设DF=x m,CF=x m,
∴CD=,∴x=10,∴BH=DF=10m,CF=m,∴DH=BF=+30(m),
∵∠ADH=30°,∴AH=(m),∴AB=AH+BH=(m),故答案为:.
【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.
变式3.(2022·湖南郴州·中考真题)如图是某水库大坝的横截面,坝高,背水坡BC的坡度为.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为,求背水坡新起点A与原起点B之间的距离.(参考数据:,.结果精确到0.1m)
【答案】背水坡新起点A与原起点B之间的距离约为14.6m
【分析】通过解直角三角形和,分别求出AD和BD的长,由求出AB的长.
【详解】解:在中,∵背水坡BC的坡度,∴,∴.
在中,∵背水坡AC的坡度,
∴,∴,∴.
答:背水坡新起点A与原起点B之间的距离约为14.6m.
【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度.
考点5. 解直角三角形的应用—仰角俯角问题
【典例精析】
例1.(2022·湖北随州·中考真题)如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,,则建筑物AB的高度为( )
A. B. C. D.
【答案】D
【分析】设AB=x,利用正切值表示出BC和BD的长,CD=BC-BD,从而列出等式,解得x即可.
【详解】设AB=x,由题意知,∠ACB=α,∠ADB=β,∴,,
∵CD=BC-BD,∴,∴,即AB=,故选:D.
【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键.
例2.(2022·湖北黄冈·中考真题)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离.已知乙建筑物的高度为,则甲建筑物的高度为________.(,,,结果保留整数).
【答案】
【分析】过点作于点,则,,,在中,,设,则,,,在中,,解得,进而可得出答案.
【详解】解:如图,过点作于点,设,根据题意可得:,,
∴,∴四边形是矩形,
∵从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离,乙建筑物的高度为,∴,,,
在中,,∴,∴,
∴,∴,∴,
在中,即,
∴解得,
经检验是原分式方程的解且符合题意,∴.故答案为:.
【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题关键.
例3.(2022·辽宁锦州·中考真题)某数学小组要测量学校路灯的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:
测量项目 测量数据
从A处测得路灯顶部P的仰角
从D处测得路灯顶部P的仰角
测角仪到地面的距离
两次测量时测角仪之间的水平距离
计算路灯顶部到地面的距离约为多少米 (结果精确到0.1米.参考数据;)
【答案】3.5米
【分析】延长DA,交PE于点F,则DF⊥PE,先得到四边形ABCD、CDFE是矩形,然后由解直角三角形求出AF的长度,再求出PF的长度,即可求出答案.
【详解】解:如图:延长DA,交PE于点F,则DF⊥PE,
∵,∴四边形ABCD是平行四边形,
∵AB⊥BC,∴四边形ABCD是矩形,同理:四边形CDFE是矩形;
∴,,在直角△PDF中,有,
在直角△PAF中,有,∴,
即,∴,解得:;
∴;∴(米);
∴路灯顶部到地面的距离约为3.5米.
【点睛】本题考查了解直角三角形的应用,解直角三角形,矩形的判定和性质,解题的关键是熟练掌握题意,正确的作出辅助线,正确的求出PF的长度.
【变式训练】
变式1.(2022·广西贵港·中考真题)如图,某数学兴趣小组测量一棵树的高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
【答案】A
【分析】设CD=x,在Rt△ADC中,∠A=45°,可得CD=AD=x,BD=16-x,在Rt△BCD中,用∠B的正切函数值即可求解.
【详解】设CD=x,在Rt△ADC中,∠A=45°,∴CD=AD=x,∴BD=16-x,
在Rt△BCD中,∠B=60°,∴,即:, 解得,故选A.
【点睛】本题考查三角函数,根据直角三角形的边的关系,建立三角函数模型是解题的关键.
变式2.(2022·湖南衡阳·中考真题)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,,,.已知测角仪的高度为,则大雁雕塑的高度约为_________.(结果精确到.参考数据:)
【答案】10.2
【分析】先根据三角形外角求得,再根据三角形的等角对等边得出BF=DF=AE=10m,再解直角三角形求得BG即可求解.
【详解】解:∵且,∴,
∴,即.∴,
∴,故答案为:.
【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键.
变式3.(2022·山东聊城·中考真题)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:,,,,,)
【答案】古槐的高度约为13米
【分析】过点A作AM⊥EH于M,过点C作CN⊥EH于N,在Rt△AME中,根据锐角三角函数求出AM=12米,进而求出CN=8米,再在Rt△ENC中,根据锐角三角函数求出EN=32.08米,即可求出答案.
【详解】解:过点A作AM⊥EH于M,过点C作CN⊥EH于N,
由题意知,AM=BH,CN=DH,AB=MH,在中,∠EAM=26.6°,
∴,∴米,∴BH=AM=12米,
∵BD=20,∴DH=BDBH=8米,∴CN=8米,在中,∠ECN=76°,
∴,∴米,
∴(米),即古槐的高度约为13米.
【点睛】此题考查解直角三角形的应用——仰角俯角问题,作出辅助线构造出直角三角形是解本题的关键.
考点6. 解直角三角形的应用—方位角问题
【典例精析】
例1.(2022·重庆·中考真题)如图,三角形花园紧邻湖泊,四边形是沿湖泊修建的人行步道.经测量,点在点的正东方向,米.点在点的正北方向.点,在点的正北方向,米.点在点的北偏东,点在点的北偏东.
(1)求步道的长度(精确到个位);(2)点处有直饮水,小红从出发沿人行步道去取水,可以经过点到达点,也可以经过点到达点.请计算说明他走哪一条路较近?(参考数据:,)
【答案】(1)283米(2)经过点到达点较近
【分析】(1)过作的垂线,垂足为,可得四边形ACHE是矩形,从而得到米,再证得△DEH为等腰直角三角形,即可求解;(2)分别求出两种路径的总路程,即可求解.
(1)解:过作的垂线,垂足为,
∴∠CAE=∠C=∠CHE=90°,∴四边形ACHE是矩形,∴米,
根据题意得:∠D=45°,∴△DEH为等腰直角三角形,∴DH=EH=200米,
∴(米);
(2)解: 根据题意得:∠ABC=∠BAE=30°,在中,∴米,
∴经过点到达点,总路程为AB+BD=500米,∴(米),
∴(米),
∴经过点到达点,总路程为,
∴经过点到达点较近.
【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.
例2.(2022·山东青岛·中考真题)如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A处时,某艘海上观光船位于小宇北偏东的点C处,观光船到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:,,,,,)
【答案】观光船从C处航行到D处的距离为米
【分析】过点C作于点F,根据题意利用正切函数可得,由矩形的判定和性质得出,结合图形利用锐角三角函数解三角形即可.
【详解】解:过点C作于点F,由题意得,,
在中,,∵
∴∴
∵∴四边形为矩形∴.
在中,∵∴
答:观光船从C处航行到D处的距离为米.
【点睛】题目主要考查解三角形的应用,理解题意,找准各角之间的关系,利用锐角三角函数解三角形是解题关键.
例3.(2022·辽宁·中考真题)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).
【答案】货轮从A到B航行的距离约为30.6海里.
【分析】过B作BD⊥AC于D,在Rt△BCD中,利用正弦函数求得BD=15.32海里,再在Rt△ABD中,利用含30度角的直角三角形的性质即可求解.
【详解】解:过B作BD⊥AC于D,
由题意可知∠ABE=30°,∠BAC=30°,则∠C=180°-30°-30°-70°=50°,
在Rt△BCD中,∠C=50°,BC=20(海里),∴BD= BCsin50°≈20×0.766=15.32(海里),
在Rt△ABD中,∠BAD=30°,BD=15.32(海里),∴AB=2BD=30.64≈30.6(海里),
答:货轮从A到B航行的距离约为30.6海里.
【点睛】本题考查解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.
【变式训练】
变式1.(2022·湖南岳阳·中考真题)喜迎二十大,“龙舟故里”赛龙舟.丹丹在汩罗江国际龙舟竞渡中心广场点处观看200米直道竞速赛.如图所示,赛道为东西方向,赛道起点位于点的北偏西方向上,终点位于点的北偏东方向上,米,则点到赛道的距离约为______米(结果保留整数,参考数据:).
【答案】87
【分析】过点作,垂足为,设米,然后分别在和中,利用锐角三角函数的定义求出,的长,再根据米,列出关于的方程,进行计算即可解答.
【详解】解:过点作,垂足为, 设米,
在中,,∴(米),
在中,,∴(米),
∵米,∴,∴,∴,
∴米,∴点到赛道的距离约为87米,故答案为:87.
【点睛】本题考查了解直角三角形的应用—方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
变式2.(2022·四川泸州·中考真题)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).
【答案】B,D间的距离为14nmile.
【分析】如图,过点D作DE⊥AB于点E,根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC=8 nmile.再根据锐角三角函数即可求出B,D间的距离.
【详解】解:如图,过点D作DE⊥AB于点E,
根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC=8 nmile.
在Rt△ABC中,AC=BC=8,∴AB=BC=16(nmile),
在Rt△ADE中,AD=10 nmile,∠EAD=60°,∴DE=AD sin60°=10×=(nmile),
AE=AD=5 (nmile),∴BE=AB-AE=11(nmile),∴BD=14(nmile),
答:B,D间的距离为14nmile.
【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.
变式3.(2022·湖南邵阳·中考真题)如图,一艘轮船从点处以的速度向正东方向航行,在处测得灯塔在北偏东方向上,继续航行到达处,这时测得灯塔在北偏东方向上,已知在灯塔的四周内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:,)
【答案】这艘轮船继续向正东方向航行是安全的,理由见解析
【分析】如图,过C作CD⊥AB于点D,根据方向角的定义及余角的性质求出∠BAC=30°,∠CBD=45°,解Rt△ACD和Rt△BCD,求出CD即可.
【详解】解:过点C作CD⊥AB,垂足为D.如图所示:
根据题意可知∠BAC=90° 60°=30°,∠DBC=90°-45°=45°,AB=30×1=30(km),
在Rt△BCD中,∠CDB=90°,∠DBC=45°,tan∠DBC=,即=1∴CD=BD
设BD=CD=xkm,在Rt△ACD中,∠CDA=90°,∠DAC=30°,
∴tan∠DAC=,即解得x=15+15≈40.98,
∵40.98km>40km∴这艘船继续向东航行安全.
【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.
考点7. 解直角三角形的应用—其他问题
【典例精析】
例1.(2022·福建·中考真题)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A.9.90cm B.11.22cm C.19.58cm D.22.44cm
【答案】B
【分析】根据等腰三角形的性质及BC=44cm,可得cm,根据等腰三角形的性质及,可得,在中,由,求得AD的长度.
【详解】解:∵等腰三角形ABC,AB=AC,AD为BC边上的高,∴,
∵BC=44cm,∴cm.∵等腰三角形ABC,AB=AC,,
∴.∵AD为BC边上的高,,
∴在中,,∵,cm,
∴cm.故选:B.
【点睛】本题考查了等腰三角形的性质以及锐角三角函数的定义,熟练掌握正切的定义是解题的关键.
例2.(2022·吉林·中考真题)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
【答案】点A到CD的距离AE的长度约为88cm.
【分析】根据正弦的概念即可求解.
【详解】解:在Rt△ACE中,∠AEC=90°,∠ACE=58°,AC=AB+BC=34+70=104(cm),
∵sin∠ACE=,即sin58°=,∴AE=104×0.85=88.4≈88(cm),
∴点A到CD的距离AE的长度约为88cm.
【点睛】本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键.
例3.(2022·江西·中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A,D,H,G四点在同一直线上,测得.(结果保留小数点后一位)
(1)求证:四边形为平行四边形;(2)求雕塑的高(即点G到的距离).
(参考数据:)
【答案】(1)见解析(2)雕塑的高为7.5m,详见解析
【分析】(1)根据平行四边形的定义可得结论;
(2)过点G作GP⊥AB于P,计算AG的长,利用 ∠A的正弦可得结论.
(1)证明:∵,∴∠CDG=∠A,
∵∠FEC=∠A,∴ ∠FEC=∠CDG,∴EF∥DG,
∵FG∥CD,∴四边形DEFG为平行四边形;
(2)如图,过点G作GP⊥AB于P,
∵四边形DEFG为平行四边形,∴DG=EF=6.2,
∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,
在Rt△APG中,sinA= ,∴=0.96,
∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.
【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.
【变式训练】
变式1.(2022·浙江金华·中考真题)一配电房示意图如图所示,它是一个轴对称图形,已知,,则房顶A离地面的高度为( )
A. B. C. D.
【答案】B
【分析】过点A作AD⊥BC于D,根据轴对称图形得性质即可得BD=CD,从而利用锐角三角函数正切值即可求得答案.
【详解】解:过点A作AD⊥BC于D,如图所示:
∵它是一个轴对称图形,∴m,,即,
房顶A离地面的高度为,故选B.
【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.
变式2.(2022·四川成都·中考真题)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)
【答案】约为
【分析】在Rt△ACO中,根据正弦函数可求OA=20cm,在Rt△中,根据正弦函数求得的值.
【详解】解:在Rt△ACO中,∠AOC=180°-∠AOB=30°,AC=10cm,
∴OA=,在Rt△中,,cm,
∴cm.
【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.
变式3.(2022·湖南湘潭·中考真题)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中):伞柄始终平分,,当时,伞完全打开,此时.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:)
【答案】72cm
【分析】过点作于点,解,分别求得,进而求得,根据黄金比求得,求得的长,即可求解.
【详解】如图,过点作于点
,,始终平分,

解得
答:最少需要准备长的伞柄
【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.
考点8. 解直角三角形的应用—新定义问题
【典例精析】
例1.(2022·黑龙江·中考)定义运算;,.例如:当,时,,则的值为_______.
【答案】
【分析】根据代入进行计算即可.
【详解】解:=
===.故答案为:.
【点睛】此题考查了公式的变化,以及锐角三角函数值的计算,掌握公式的转化是解题的关键.
例2.(2022·湖南·中考真题)阅读下列材料:
在中,、、所对的边分别为、、,求证:.
证明:如图1,过点作于点,则:
在中, CD=asinB
在中,
根据上面的材料解决下列问题:
(1)如图2,在中,、、所对的边分别为、、,求证:;
(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图3,规划中的一片三角形区域需美化,已知,,米,求这片区域的面积.(结果保留根号.参考数据:,
【答案】(1)见解析 (2)
【分析】(1)作BC边上的高,利用三角函数表示AD后,即可建立关联并求解;
(2)作BC边上的高,利用三角函数分别求出AE和BC,即可求解.
(1)证明:如图2,过点作于点,
在中,,在中,,,;
(2)解:如图3,过点作于点,,,,
在中,
又,即,,.
【点睛】本题考查了解直角三角形的应用,掌握直角三角形的边角关系,即锐角三角函数的定义是解决问题的前提.
【变式训练】
变式1.(2020·贵州遵义市·中考真题)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为(  )
A. B.﹣1 C. D.
【答案】B
【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.
【详解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,
故选:B.
【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.
变式2.(2020·四川广元市·中考真题)规定:给出以下四个结论:(1) ;(2);(3) ;(4)其中正确的结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据题目所规定的公式,化简三角函数,即可判断结论.
【详解】解:(1),故此结论正确;
(2),故此结论正确;
(3)故此结论正确;
(4)==
,故此结论错误.故选:C.
【点睛】本题属于新定义问题,主要考查了三角函数的知识,解题的关键是熟练掌握三角函数的基础知识,理解题中公式.
变式3.(2022·湖南湘西·统考中考真题)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍.
用公式可描述为:a2=b2+c2﹣2bccosA;b2=a2+c2﹣2accosB;c2=a2+b2﹣2abcosC
现已知在△ABC中,AB=3,AC=4,∠A=60°,则BC=_____.
【答案】
【分析】从阅读可得:BC2=AB2+AC2﹣2ABACcosA,将数值代入求得结果.
【详解】解:由题意可得,
BC2=AB2+AC2﹣2AB AC cosA=32+42﹣2×3×4cos60°=13,∴BC=,故答案为:.
【点睛】本题考查阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题18 解直角三角形
【考情预测】
该板块主要考查锐角三角函数的定义和特殊角的三角函数,尤其是应用主要在综合题中考查,是考查重点,每年都有一道三角函数的综合题,看似考查解题的综合能力,实质是基本的定义和应用.有时比较简单,有时难点较大不易得分,分值为12分左右。预计2023年浙江各地中考还将以选题和综合题的形式出现,在牢固掌握定义的同时,一定要理解基本的方法,利用辅助线构造直角三角形,是得分的关键。
【考点梳理】
1、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,
正弦:sinA=;余弦:cosA=;正切:tanA=.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
2、特殊角的三角函数值
α sinα cosα tanα
30°
45° 1
60°
3、解直角三角形
1)在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2)解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2; 2)两锐角关系:∠A+∠B=90°;3)边与角关系:sinA=cosB=,cosA=sinB=,tanA=; 4)sin2A+cos2A=1.
3)科学选择解直角三角形的方法口诀:
已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;
已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;
已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.
4、解直角三角形的应用
1)仰角和俯角
仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.
俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.
2)坡度和坡角
坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=.
坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.
3)方向角(或方位角)
指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.
4).解直角三角形中“双直角三角形”的基本模型:
解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.
5).解直角三角形实际应用的一般步骤
(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;
(3)选择合适的边角关系式,使运算简便、准确;
(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.
【重难点突破】
考点1. 三角函数的定义
【解题技巧】
1)分清直角三角形中的斜边与直角边. 2)正确地表示出直角三角形的三边长,常设某条直角边长为k(有时也可设为1),在求三角函数值的过程中约去k. 3)正确应用勾股定理求第三边长. 4)应用锐角三角函数定义,求出三角函数值.
【典例精析】
例1.(2022·湖南益阳·统考中考真题)如图,在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.
例2.(2022·青海西宁·统考中考真题)在Rt△ABC中,∠C=90°,AC=1,BC=,则cosA=________.
【变式训练】
变式1.(2022·江苏扬州·中考真题)在中,,分别为的对边,若,则的值为__________.
变式2.(2022·山东滨州·中考真题)在Rt△ABC中,∠C=90°,AC=5,BC=12,则sinA=______.
变式3.(2022·浙江湖州·中考真题)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sinA的值.
考点2. 利用特殊角的三角函数值求值
【解题技巧】
锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.
【典例精析】
例1.(2022·天津·中考真题)的值等于( )
A.2 B.1 C. D.
例2.(2023·山东·中考模拟)(1)计算:;
(2)计算:.
【变式训练】
变式1.(2022·广东·中考真题)sin30°的值为_____.
变式2.(2021·山东东营市·中考真题)如图,在中,,,,若用科学计算器求AC的长,则下列按键顺序正确的是( )
A. B. C. D.
变式3.(2022·浙江·二模)计算:sin30° tan45°﹣( =__________.
考点3. 复杂几何图形中的三角函数问题
【典例精析】
例1.(2022·浙江丽水·中考真题)如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是( )
A.3 B. C. D.
例2.(2022·湖北荆州·中考真题)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,,连接AC,过点O作交AC的延长线于P.若,则的值是( )
A. B. C. D.3
【变式训练】
变式1.(2022·湖北武汉·中考真题)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C都在格点上,∠O=60°,则tan∠ABC=( )
A. B. C. D.
变式2.(2022·四川乐山·中考真题)如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为( )
A. B.3 C. D.2
变式3.(2022·浙江绍兴·中考真题)如图,,点在射线上的动点,连接,作,,动点在延长线上,,连接,,当,时,的长是______.
考点4.解直角三角形的应用—坡角(堤坝)问题
【解题技巧】解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.
【典例精析】
例1.(2022·贵州毕节·中考真题)如图,某地修建一座高的天桥,已知天桥斜面的坡度为,则斜坡的长度为(  )
A. B. C. D.
例2.(2022·湖北十堰·中考真题)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC长为m,则大树AB的高为( )
A. B. C. D.
例3.(2022·山东烟台·中考真题)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB=0.75m,斜坡AC的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED=2.55m.为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)
(参考数据表)
计算器按键顺序 计算结果(已精确到0.001)
11.310
0.003
14.744
0.005
【变式训练】
变式1.(2022·黑龙江牡丹江·中考真题)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高(   )
A.(600-250)米 B.(600-250)米 C.(350+350)米 D.500米
变式2.(2022·山东泰安·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔的高度,他从古塔底部点处前行到达斜坡的底部点C处,然后沿斜坡前行到达最佳测量点D处,在点D处测得塔顶A的仰角为,已知斜坡的斜面坡度,且点A,B,C,D,在同一平面内,小明同学测得古塔的高度是___________.
变式3.(2022·湖南郴州·中考真题)如图是某水库大坝的横截面,坝高,背水坡BC的坡度为.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为,求背水坡新起点A与原起点B之间的距离.(参考数据:,.结果精确到0.1m)
考点5. 解直角三角形的应用—仰角俯角问题
【典例精析】
例1.(2022·湖北随州·中考真题)如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,,则建筑物AB的高度为( )
A. B. C. D.
例2.(2022·湖北黄冈·中考真题)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离.已知乙建筑物的高度为,则甲建筑物的高度为________.(,,,结果保留整数).
例3.(2022·辽宁锦州·中考真题)某数学小组要测量学校路灯的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:
测量项目 测量数据
从A处测得路灯顶部P的仰角
从D处测得路灯顶部P的仰角
测角仪到地面的距离
两次测量时测角仪之间的水平距离
计算路灯顶部到地面的距离约为多少米 (结果精确到0.1米.参考数据;)
【变式训练】
变式1.(2022·广西贵港·中考真题)如图,某数学兴趣小组测量一棵树的高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
变式2.(2022·湖南衡阳·中考真题)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,,,.已知测角仪的高度为,则大雁雕塑的高度约为_________.(结果精确到.参考数据:)
变式3.(2022·山东聊城·中考真题)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:,,,,,)
考点6. 解直角三角形的应用—方位角问题
【典例精析】
例1.(2022·重庆·中考真题)如图,三角形花园紧邻湖泊,四边形是沿湖泊修建的人行步道.经测量,点在点的正东方向,米.点在点的正北方向.点,在点的正北方向,米.点在点的北偏东,点在点的北偏东.
(1)求步道的长度(精确到个位);(2)点处有直饮水,小红从出发沿人行步道去取水,可以经过点到达点,也可以经过点到达点.请计算说明他走哪一条路较近?(参考数据:,)
例2.(2022·山东青岛·中考真题)如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A处时,某艘海上观光船位于小宇北偏东的点C处,观光船到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:,,,,,)
例3.(2022·辽宁·中考真题)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).
【变式训练】
变式1.(2022·湖南岳阳·中考真题)喜迎二十大,“龙舟故里”赛龙舟.丹丹在汩罗江国际龙舟竞渡中心广场点处观看200米直道竞速赛.如图所示,赛道为东西方向,赛道起点位于点的北偏西方向上,终点位于点的北偏东方向上,米,则点到赛道的距离约为______米(结果保留整数,参考数据:).
变式2.(2022·四川泸州·中考真题)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).
变式3.(2022·湖南邵阳·中考真题)如图,一艘轮船从点处以的速度向正东方向航行,在处测得灯塔在北偏东方向上,继续航行到达处,这时测得灯塔在北偏东方向上,已知在灯塔的四周内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:,)
考点7. 解直角三角形的应用—其他问题
【典例精析】
例1.(2022·福建·中考真题)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A.9.90cm B.11.22cm C.19.58cm D.22.44cm
例2.(2022·吉林·中考真题)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
例3.(2022·江西·中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A,D,H,G四点在同一直线上,测得.(结果保留小数点后一位)
(1)求证:四边形为平行四边形;(2)求雕塑的高(即点G到的距离).
(参考数据:)
【变式训练】
变式1.(2022·浙江金华·中考真题)一配电房示意图如图所示,它是一个轴对称图形,已知,,则房顶A离地面的高度为( )
A. B. C. D.
变式2.(2022·四川成都·中考真题)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)
变式3.(2022·湖南湘潭·中考真题)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中):伞柄始终平分,,当时,伞完全打开,此时.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:)
考点8. 解直角三角形的应用—新定义问题
【典例精析】
例1.(2022·黑龙江·中考)定义运算;,.例如:当,时,,则的值为_______.
例2.(2022·湖南·中考真题)阅读下列材料:
在中,、、所对的边分别为、、,求证:.
证明:如图1,过点作于点,则:
在中, CD=asinB
在中,
根据上面的材料解决下列问题:
(1)如图2,在中,、、所对的边分别为、、,求证:;
(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图3,规划中的一片三角形区域需美化,已知,,米,求这片区域的面积.(结果保留根号.参考数据:,
【变式训练】
变式1.(2020·贵州遵义市·中考真题)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为(  )
A. B.﹣1 C. D.
变式2.(2020·四川广元市·中考真题)规定:给出以下四个结论:(1) ;(2);(3) ;(4)其中正确的结论的个数为( )
A.1个 B.2个 C.3个 D.4个
变式3.(2022·湖南湘西·统考中考真题)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍.
用公式可描述为:a2=b2+c2﹣2bccosA;b2=a2+c2﹣2accosB;c2=a2+b2﹣2abcosC
现已知在△ABC中,AB=3,AC=4,∠A=60°,则BC=_____.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题18 解直角三角形 考场演练
【考场演练1】热点必刷
1.(2022·广西贵港·中考真题)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
【答案】C
【分析】过点C作AB的垂线,构造直角三角形,利用勾股定理求解即可.
【详解】解:过点C作AB的垂线交AB于一点D,如图所示,
∵每个小正方形的边长为1,∴,
设,则,在中,,
在中,,∴,解得,
∴,故选:C.
【点睛】本题考查了解直角三角形,勾股定理等知识,解题的关键是能构造出直角三角形.
2.(2022·吉林长春·中考真题)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,垂直地面,垂足为点D,,垂足为点C.设,下列关系式正确的是( )
A. B. C. D.
【答案】D
【分析】根据正弦三角函数的定义判断即可.
【详解】∵BC⊥AC,∴△ABC是直角三角形,∵∠ABC=α,∴,故选:D.
【点睛】本题考查了正弦三角函数的定义.在直角三角形中任意锐角∠A的对边与斜边之比叫做∠A的正弦,记作sin∠A.掌握正弦三角函数的定义是解答本题的关键.
3.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若.,则的值为( )
A. B. C. D.
【答案】A
【分析】根据勾股定理和三角函数求解.
【详解】∵在中,,∴
在中,,故选:A.
【点睛】本题主要考查勾股定理和三角函数.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.
4.(2023·浙江中考模拟)如图,矩形的对角线交于点O,已知则下列结论错误的是( )
A. B. C. D.
【答案】C
【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.
【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,
∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,
选项A正确; 选项B,在Rt△ABC中,tanα=,即BC=m tanα,选项B正确;
选项C,在Rt△ABC中,AC=,即AO=,选项C错误;
选项D,∵四边形ABCD是矩形,∴DC=AB=m,
∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.
【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.
5.(2021·浙江金华市·中考真题)如图是一架人字梯,已知米,AC与地面BC的夹角为,则两梯脚之间的距离BC为( )
A.米 B.米 C.米 D.米
【答案】A
【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.
【详解】过点A作,如图所示:
∵,,∴,∵,∴,
∴,故选:A.
【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.
6.(2021·浙江杭州市·中考真题)sin30°的值为_____.
【答案】
【详解】根据特殊角的三角函数值计算即可:sin30°=.
7.(2022·浙江嘉兴·中考真题)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.
【答案】
【分析】先求解 再利用线段的和差可得答案.
【详解】解:由题意可得:
同理: 故答案为:
【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.
8.(2022·江苏连云港·中考真题)如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则_________.
【答案】
【分析】如图所示,过点C作CE⊥AB于E,先求出CE,AE的长,从而利用勾股定理求出AC的长,由此求解即可.
【详解】解:如图所示,过点C作CE⊥AB于E,
由题意得,∴,∴,故答案为:.
【点睛】本题考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.
9.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为_______cm(结果保留根号).
【答案】
【分析】根据题意即可求得∠MOD=2∠NOD,即可求得∠NOD=30°,从而得出∠ADB=30°,再解直角三角形ABD即可.
【详解】解:∵时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O,
∴∠MOD=2∠NOD, ∵∠MOD+∠NOD=90°,∴∠NOD=30°,
∵四边形ABCD是矩形,∴AD//BC,∠A=90°,AD=BC,∴∠ADB=∠NOD=30°,
∴故答案为:.
【点睛】本题考查的矩形的性质、解直角三角形等知识;理解题意灵活运用所学知识得出∠NOD=30°是解题的关键.
10.(2022·辽宁大连·中考真题)如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为,测得白塔顶部C的仰角的为.索道车从A处运行到B处所用时间的为5分钟.
(1)索道车从A处运行到B处的距离约为________米;(2)请你利用小明测量的数据,求白塔的高度(结果取整数).(参考数据:)
【答案】(1)300(2)白塔的高度约为米.
【分析】(1)由路程等于速度乘以时间即可得到答案;
(2)由题意可得: 而 再求解 再利用 再解方程即可.
【解析】(1)解:∵索速车运行的速度是1米/秒,索道车从A处运行到B处所用时间的为5分钟,
∴(米)故答案为:300
(2)解:由题意可得: 而

∴ 所以白塔的高度约为米.
【点睛】本题考查的是解直角三角形的应用,熟练的利用三角函数建立方程是解本题的关键.
11.(2022·四川广安·中考真题)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.75
【答案】菜园与果园之间的距离为630米
【分析】过点作,交于点,则,四边形是矩形,在中,求得,CF=240,进而求得AE=210,在中,利用正切进行求解即可.
【详解】解:如图,过点作,交于点,则,
∵∠B=90°,四边形是矩形,,BC=EF,
在中,,
∴BE=240,∴AE=AB-BE=210,在中,,,
米.∴BC=EF=DF+DE=180+450=630
答:菜园与果园之间的距离630米.
【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.
12.(2022·湖北恩施·中考真题)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB的长(参考数据:,,结果精确到1m).
【答案】古亭与古柳之间的距离的长约为
【分析】过点作的垂直,交延长线于点,设,则,分别在和中,解直角三角形求出的长,再建立方程,解方程可得的值,由此即可得出答案.
【详解】解:如图,过点作的垂直,交延长线于点,
由题意得:,设,则,
在中,,
在中,,,
则,解得,则,
答:古亭与古柳之间的距离的长约为.
【点睛】本题考查了解直角三角形的应用,通过作辅助线,构造直角三角形是解题关键.
13.(2022·四川遂宁·中考真题)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角,台阶AB长26米,台阶坡面AB的坡度,然后在点B处测得塔楼顶端点E的仰角,则塔顶到地面的高度EF约为多少米.(参考数据:,,,)
【答案】塔顶到地面的高度EF约为47米
【分析】延长EF交AG于点H,则,过点B作于点P,则四边形BFHP为矩形,设,则,根据解直角三角形建立方程求解即可.
【详解】如图,延长EF交AG于点H,则,
过点B作于点P,则四边形BFHP为矩形,∴,.
由,可设,则,由可得,
解得或(舍去),∴,,设米,米,
在中,即,则①
在中,,
即② 由①②得,.
答:塔顶到地面的高度EF约为47米.
【点睛】本题考查了解直角三角形的实际应用,准确理解题意,熟练掌握知识点是解题的关键.
14.(2022·贵州遵义·中考真题)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,是灯杆,是灯管支架,灯管支架与灯杆间的夹角.综合实践小组的同学想知道灯管支架的长度,他们在地面的点处测得灯管支架底部的仰角为60°,在点处测得灯管支架顶部的仰角为30°,测得m,m(,,在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度的长(结果保留根号);
(2)求灯管支架的长度(结果精确到0.1m,参考数据:).
【答案】(1)(2)
【分析】(1)解即可求解;(2)延长交于点,证明是等边三角形,解,根据即可求解.
(1)在中,
(2)如图,延长交于点,
中, 是等边三角形
答:灯管支架的长度约为.
【点睛】本题考查了解直角三角形的应用,等边三角形的性质与判定,掌握以上知识是解题的关键.
15.(2022·山西·中考真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:).
【答案】58m
【分析】延长AB和CD分别与直线OF交于点G和点H,则,再根据图形应用三角函数即可求解.
【详解】解:延长AB和CD分别与直线OF交于点G和点H,则.
又∵,∴四边形ACHG是矩形.∴.
由题意,得.
在中,,∴﹒
∵是的外角,∴.
∴.∴.在中,
∴.∴.
答:楼AB与CD之间的距离AC的长约为58m.
【点睛】本题考查三角函数的综合应用,正确构造直角三角形并应用三角函数进行求解是解题的关键.
16.(2022·江苏泰州·中考真题)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少 (结果精确到0.1 m,参考数据:sin34°≈0.56, tan34°≈0.68,tan56°≈1.48)
【答案】
【分析】过M点作ME⊥MN交CD于E点,证明四边形ABCM为矩形得到CM=AB=8,∠NMC=180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD=∠EMC,且∠CME=90°-∠CMN=28°,进而求出∠CMD=56°,最后在Rt△CMD中由tan∠CMD即可求解.
【详解】解:过M点作ME⊥MN交CD于E点,如下图所示:
∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,
∵房顶AM与水平地面平行,AB为墙面,∴四边形AMCB为矩形,
∴MC=AB=8,AB∥CM,∴∠NMC=180°-∠BNM=180°-118°=62°,
∵地面上的点D经过平面镜MN反射后落在点C,结合物理学知识可知:
∴∠NME=90°,∴∠EMD=∠EMC=90°-∠NMC=90°-62°=28°,∴∠CMD=56°,
在Rt△CMD中,,代入数据:,
∴,即水平地面上最远处D到小强的距离CD是.
【点睛】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.
17.(2021·浙江台州·中考真题)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地l,活动杆CD固定在支撑杆上的点E处,若∠AED=48°,BE=110 cm,DE=80 cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈1. 11)
【答案】
【分析】过点E作,易得四边形EBFM是矩形,即,再通过解直角三角形可得,即可求解.
【详解】解:过点E作,
∵,,,∴,
∴四边形EBFM是矩形,∴,
∵∠AED=48°,∴,
∴,∴.
【点睛】本题考查解直角三角形的实际应用,做出合适的辅助线构造直角三角形是解题的关键.
18.(2021·浙江宁波市·中考真题)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点的位置,且A,B,三点共线,,B为中点,当时,伞完全张开.
(1)求的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:)
【答案】(1)20cm;(2)26.4cm
【分析】(1)根据中点的性质即可求得;(2)过点B作于点E.根据等腰三角形的三线合一的性质求出.利用角平分线的性质求出∠BAE的度数,再利用三角函数求出AE,即可得到答案.
【详解】解:(1)∵B为中点,∴,∵,∴.
(2)如图,过点B作于点E.
∵,∴.∵平分,∴.
在中,,∴,∴.
∵,∴,∴伞圈D沿着伞柄向下滑动的距离为.
【点睛】此题考查的是解直角三角形的实际应用,等腰三角形的三线合一的性质,线段中点的性质,角平分线的性质,正确构建直角三角形解决问题是解题的关键.
19.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,
(1)转动连杆BC,手臂CD,使,,如图2,求手臂端点D离操作台的高度DE的长(精确到1cm,参考数据:,).(2)物品在操作台上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
【答案】(1)106cm;(2)能碰到,见解析
【分析】(1)通过作辅助线构造直角三角形,利用三角函数值解直角三角形即可完成求解;
(2)求出端点D能够到的最远距离,进行比较即可得出结论.
【详解】解:(1)过点C作于点P,过点B作于点Q,如图1,
,,
在中,, .
,.
∴手臂端点D离操作台 l 的高度DE的长为106cm.
(2)能.理由:当点B,C,D共线时,如图2,
,,在中,,
.手臂端点D能碰到点M.
【点睛】本题考查了直角三角形的应用,涉及到了解直角三角形等知识,解决本题的关键是能读懂题意,并通过作辅助线构造直角三角形,能正确利用三角函数值解直角三角形等,考查了学生的综合分析与知识应用的能力.
20.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得,,.
(1)椅面CE的长度为_________cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角的度数达到最小值时,A,B两点间的距离为________cm(结果精确到0.1cm).(参考数据:,,)
【答案】40 12.5
【分析】(1)过点C作CM垂直AF,垂足为M,,列比例求出CM长度,则CE=AB-CM;(2)根据图2可得,对应袋图3中求出CD长度,列比例求AB即可.
【详解】解:(1)过点C作CM垂直AF,垂足为M,
∵椅面CE与地面平行,∴,
∴,解得:CM=8cm,
∴CE=AB-CM=48-8=40cm;故答案为:40;
(2)在图2中,∵,椅面CE与地面平行,∴,
∵,∴,
∴,∴,∴,
∵H是CD的中点,∴,
∵椅面CE与地面平行,∴,∴,
图3中,过H点作CD的垂线,垂足为N,因为 ,,
∴,∴,∴,
解得:,故答案为:12.5.
【点睛】本题主要考查相似三角形的判定与性质,锐角三角函数等知识点,找到对应相似三角形并正确列出比例是解决本题的关键.
21.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,为喷嘴,为按压柄,为伸缩连杆,和为导管,其示意图如图2,,,.当按压柄按压到底时,转动到,此时(如图3).
(1)求点转动到点的路径长;(2)求点到直线的距离(结果精确到).
(参考数据:,,,,,)
【答案】(1);(2)点到直线的距离约为7.3cm.
【分析】(1)根据题目中的条件,首先由,,求出,再继续求出,点转动到点的路径长,是以为半径,为圆心的圆的周长的一部分,根据占的比例来求出路径;(2)求点到直线的距离,实际上是过点作的垂线交于某点,连接两点所确定的距离即为所求,但这样做不好求解.于是把距离拆成两个部分,放在两个直角三角形中,分别利用直角三角形中锐角三角函数知识求出每段的距离,再求和即为所求.
【详解】解:(1)如图,
∵,,∴.
∵,∴.
又∵,∴点转动到点的路径长.
(2)如图,过点作于点,过点作于点.
在中, .
在中,.
∴.
又∵,∴点到直线的距离约为7.3cm.
【点睛】本题考查了两点间转动的路径问题、点到直线的距离问题,锐角三角函数知识,解题的关键是:确定路径是在圆上,占圆周长的多少,就转化成角度间的比值问题了;距离问题,当直接求解比较困难的时候,看是否能把所求拆分成几个部分,再逐一突破.
22.(2022·湖南怀化·中考真题)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上,C村在B村的正东方向且两村相距2.4千米.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明. (参考数据:≈1.73,≈1.41)
【答案】不穿过,理由见解析
【分析】先作AD⊥BC,再根据题意可知∠ACD=45°,∠ABD=30°,设CD=x,可表示AD和BD,然后根据特殊角三角函数值列出方程,求出AD,与800米比较得出答案即可.
【详解】不穿过,理由如下:过点A作AD⊥BC,交BC于点D,根据题意可知∠ACD=45°,∠ABD=30°.
设CD=x,则BD=2.4-x,在Rt△ACD中,∠ACD=45°,
∴∠CAD=45°,∴AD=CD=x.在Rt△ABD中,,
即,解得x=0.88,可知AD=0.88千米=880米,
因为880米>800米,所以公路不穿过纪念园.
【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.
23.(2022·浙江嘉兴·中考真题)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知,,,,.(结果精确到0.1,参考数据:,,,,,)
(1)连结,求线段的长.(2)求点A,B之间的距离.
【答案】(1)(2)
【分析】(1)过点C作于点F,根据等腰三角形的性质可得, ,再利用锐角三角函数,即可求解;(2)连结.设纸飞机机尾的横截面的对称轴为直线l,可得对称轴l经过点C.从而得到四边形DGCE是矩形,进而得到DE=CG,然后过点D作于点G,过点E作EH⊥AB于点H,可得,从而得到,再利用锐角三角函数,即可求解.
(1)解:如图2,过点C作于点F,
∵,∴,平分.∴,
∴,∴.
(2)解:如图3,连结.设纸飞机机尾的横截面的对称轴为直线l,
∵纸飞机机尾的横截面示意图是一个轴对称图形,
∴对称轴l经过点C.∴,,∴AB∥DE.
过点D作于点G,过点E作EH⊥AB于点H,
∵DG⊥AB,HE⊥AB,∴∠EDG =∠DGH=∠EHG=90°,∴四边形DGCE是矩形,
∴DE=HG,∴DG∥l, EH∥l,∴,
∵,BE⊥CE, ∴,
∴,∴.
【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.
23.(2021·江苏徐州市·中考真题)如图,斜坡的坡角,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点,过其另一端安装支架,所在的直线垂直于水平线,垂足为点为与的交点.已知,前排光伏板的坡角.
(1)求的长(结果取整数);(2)冬至日正午,经过点的太阳光线与所成的角.后排光伏板的前端在上.此时,若要后排光伏板的采光不受前排光伏板的影响,则的最小值为多少(结果取整数)?参考数据:
三角函数锐角 13° 28° 32°
0.22 0.47 0.53
0.97 0.88 0.85
0.23 0.53 0.62
【答案】(1);(2)
【分析】(1)解Rt△ADF求出AF,再解Rt△AEF求出AE即可;
(2)设DG交AB一直在点M,作AN⊥GD延长线于点N,解Rt△ADF求出DF,Rt△DFG求出FG,得到AG,解Rt△AMN求出AM,根据AM-AE可求出结论.
【详解】解:(1)在Rt△ADF中,
∴ = = =88cm
在Rt△AEF中,∴
(2)设DG交AB一直在点M,作AN⊥GD延长线于点N,如图,
则 ∴
在Rt△ADF中,
在Rt△DFG中,
∴ ∴AG=AF+FG=88+75.8=
∵AN⊥GD∴∠ANG=90°∴
在Rt△ANM中, ∴
∴∴的最小值为
【点睛】本题考查了解直角三角形的应用,解题的关键是构造直角三角形.
24.(2022·浙江宁波·中考真题)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.
(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
【答案】(1)15m (2)在该消防车不移动位置的前提下,云梯能够伸到险情处;理由见解析
【分析】(1)在Rt△ABD中,利用锐角三角函数的定义求出AB的长,即可解答;
(2)根据题意可得DE=BC=2m,从而求出AD=17m,然后在Rt△ABD中,利用锐角三角函数的定义求出AB的长,进行比较即可解答.
(1)解:在Rt△ABD中,∠ABD=53°,BD=9m,
∴AB==15(m),∴此时云梯AB的长为15m;
(2)解:在该消防车不移动位置的前提下,云梯能伸到险情处,
理由:由题意得:DE=BC=2m,
∵AE=19m,∴AD=AE-DE=19-2=17(m),
在Rt△ABD中,BD=9m,∴AB= (m),
∵m<20m,∴在该消防车不移动位置的前提下,云梯能伸到险情处.
【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.
【考场演练2】重难点必刷
1.(2022·浙江杭州·中考真题)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )
A. B. C. D.
【答案】D
【分析】要使△ABC的面积S=BC h的最大,则h要最大,当高经过圆心时最大.
【详解】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,
如图所示,
∵AD⊥BC,∴BC=2BD,∠BOD=∠BAC=θ,
在Rt△BOD中,sinθ= ,cosθ=,
∴BD=sinθ,OD=cosθ,∴BC=2BD=2sinθ,AD=AO+OD=1+cosθ,
∴S△ABC=AD BC= 2sinθ(1+cosθ)=sinθ(1+cosθ).故选:D.
【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.
2.(2022·四川广元·中考真题)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为(  )
A. B. C. D.
【答案】B
【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.
【详解】解:把AB向上平移一个单位到DE,连接CE,如图.
则DE∥AB,
∴∠APC=∠EDC.
在△DCE中,有,,,
∴,∴是直角三角形,且,
∴cos∠APC=cos∠EDC=.故选:B.
【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.
3.(2021·四川乐山市·中考真题)如图,已知点,点为直线上的一动点,点,,于点,连接.若直线与正半轴所夹的锐角为,那么当的值最大时,的值为________.
【答案】
【分析】设直线y=﹣2与y轴交于G,过A作AH⊥直线y=﹣2于H,AF⊥y轴于F,根据平行线的性质得到∠ABH=α,由三角函数的定义得到,根据相似三角形的性质得到比例式,于是得到GB(n+2)(3﹣n)(n)2,根据二次函数的性质即可得到结论.
【详解】解:如图,设直线y=﹣2与y轴交于G,过A作AH⊥直线y=﹣2于H,AF⊥y轴于F,
∵BH∥x轴,∴∠ABH=α,在Rt△ABH中, ,,
即= ∵sinα随BA的减小而增大,
∴当BA最小时sinα有最大值;即BH最小时,sinα有最大值,即BG最大时,sinα有最大值,
∵∠BGC=∠ACB=∠AFC=90°,∴∠GBC+∠BCG=∠BCG+∠ACF=90°,
∴∠GBC=∠ACF,∴△ACF∽△CBG,∴,
∵,即,∴BG(n+2)(3﹣n)(n)2,
∵∴当n时,BG最大值故答案为:.
【点睛】本题考查了相似三角形的判定和性质,三角函数的定义,平行线的性质,正确的作出辅助线证得△ACF∽△CBG是解题的关键.
4.(2021·四川绵阳·中考真题)在直角中,,,的角平分线交于点,且,斜边的值是______.
【答案】
【分析】CD平分∠ACB,过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由此可证明四边形CEDF为正方形,再利用,根据直角三角形的性质可求出,再根据锐角三角函数和勾股定理得到,求出的值即可.
【详解】解:如图,CD平分∠ACB,过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,
∴DE=DF,,
又,∴四边形CEDF为正方形,,,
在中,,∵,,
,,,,即,
又,,∵在中,,∴,
∵在中,,∴,
,,,即(舍负),故答案为:.
【点睛】本题考查解直角三角形的应用,掌握直角三角形的边角关系是解决问题的关键.
5.(2022·山东泰安·中考真题)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为______(结果精确到).
【答案】4.4m##4.4米
【分析】根据题意可得AD∥CP,从而得到∠ADB=30°,利用锐角三角函数可得,从而得到BC=AF+CF-AB=2.54m,即可求解.
【详解】解:根据题意得:AD∥CP,∵∠DPC=30°,∴∠ADB=30°,
∵,∴,
∵AF=2m,CF=1m,∴BC=AF+CF-AB=2.54m,
∴,即的长度为4.4m.故答案为:4.4m.
【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.
6.(2022·天津·中考真题)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上.
(Ⅰ)线段的长等于___________;
(Ⅱ)若点M,N分别在射线上,满足且.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)___________.
【答案】 见解析
【分析】(Ⅰ)根据勾股定理,从图中找出EF所在直角三角形的直角边的长进行计算;
(Ⅱ)由图可找到点Q,,即四边形EFBQ是正方形,因为,所以,点M在EQ上,BM、BN与圆的交点为直径端点,所以EQ与PD交点为M,通过BM与圆的交点G和圆心O连线与圆相交于H,所以H在BN上,则延长BH与PF相交点即为N.
【详解】解:(Ⅰ)从图中可知:点E、F水平方向距离为3,竖直方向距离为1,
所以,故答案为:;
(Ⅱ)连接,与竖网格线相交于点O,O即为圆心;取格点Q(E点向右1格,向上3格),连接与射线相交于点M;连接与相交于点G;连接并延长,与相交于点H;连接并延长,与射线相交于点N,则点M,N即为所求,
理由如下:连接 由勾股定理算出,
由题意得,四边形为正方形,
在和中,,,,
,,,

,从而确定了点的位置.
【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.
7.(2022·四川凉山·中考真题)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为_______.
【答案】
【分析】如图(见解析),先根据平行线的判定与性质可得,从而可得,再根据相似三角形的判定证出,根据相似三角形的性质可得的长,然后根据正切的定义即可得.
【详解】解:如图,由题意得:,
,,,同理可得:,,,
在和中,,,,
,,解得,经检验,是所列分式方程的解,
则,故答案为:.
【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.
8.(2022·江苏常州·中考真题)如图,在四边形中,,平分.若,,则______.
【答案】
【分析】过点作的垂线交于,证明出四边形为矩形,为等腰三角形,由勾股定理算出,,即可求解.
【详解】解:过点作的垂线交于,
,四边形为矩形,,,
平分,,,,∴∠CDB=∠CBD,
,,,
,,故答案为:.
【点睛】本题考查了锐角三角函数、矩形、等腰三角形形、勾股定理、平行线的性质,解题的关键是构造直角三角形求解.
9.(2022·湖南·中考真题)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形的面积是100,小正方形的面积是4,那么__.
【答案】##0.75
【分析】根据两个正方形的面积可得,,设,得到,由勾股定理得,解方程可得x的值,从而解决问题.
【详解】解:∵大正方形ABCD的面积是100,∴.
∵小正方形EFGH的面积是4,∴小正方形EFGH的边长为2,∴,
设,则,由勾股定理得,,解得或(负值舍去),
∴,,∴.故答案为:.
【点睛】本题主要考查了正方形的性质,勾股定理,三角函数等知识,利用勾股定理列方程求出AF的长是解题的关键.
10.(2022·山东青岛·中考真题)如图,已知的平分线交于点E,且.将沿折叠使点C与点E恰好重合.下列结论正确的有:__________(填写序号)
① ②点E到的距离为3 ③ ④
【答案】①④##④①
【分析】根据等腰三角形的性质即可判断①,根据角平分线的性质即可判断②,设,则,中,,.继而求得,设,则,根据,进而求得的值,根据,,可得,即可判断④
【详解】解:∵∴,故①正确;
如图,过点作于,于,
,平分,,
是的角平分线,,,,故②不正确,
.将沿折叠使点C与点E恰好重合,,
设,则,中,,.
,解得,故③不正确,
设,则,,
,,,,
,解得或(舍去),
,,,故④正确,故答案为:①④
【点睛】本题考查了解直角三角形,三线合一,角平分线的性质,掌握以上知识是解题的关键.
11.(2022·贵州黔东南·中考真题)如图,校园内有一株枯死的大树,距树12米处有一栋教学楼,为了安全,学校决定砍伐该树,站在楼顶处,测得点的仰角为45°,点的俯角为30°,小青计算后得到如下结论:①米;②米;③若直接从点处砍伐,树干倒向教学楼方向会对教学楼有影响;④若第一次在距点的8米处的树干上砍伐,不会对教学楼造成危害.其中正确的是_______.(填写序号,参考数值:,)
【答案】①③④
【分析】过点D的水平线交AB于E,先证四边形EACD为矩形,ED=AC=12米,①利用三角函数求出AB=BE+AE=DEtan45°+DEtan30°,②利用CD=AE=DEtan30°=4米, ③利用AB=18.8米>12米,④点B到砍伐点的距离为:18.8-8=10.8<12,判断即可.
【详解】解:过点D的水平线交AB于E,
∵DE∥AC,EA∥CD,∠DCA=90°,∴四边形EACD为矩形,∴ED=AC=12米,
①AB=BE+AE=DEtan45°+DEtan30°=12+4故①正确;
②∵CD=AE=DEtan30°=4米,故②不正确;
③∵AB=18.8米>12米,∴直接从点A处砍伐,树干倒向教学楼方向会对教学楼有影响;故③正确;
④∵第一次在距点A的8米处的树干上砍伐,
∴点B到砍伐点的距离为:18.8-8=10.8<12,
∴第一次在距点A的8米处的树干上砍伐,不会对教学楼造成危害.故④正确
∴其中正确的是①③④.故答案为①③④.
【点睛】本题考查解直角三角形,矩形的判断与性质,掌握解直角三角形方法,矩形的判断与性质是解题关键.
12.(2021·浙江宁波市·中考真题)如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为__________.
【答案】2
【分析】由与关于直线对称,矩形证明再证明 可得 再求解 即可得的长; 先证明 可得: 设 则 再列方程,求解 即可得到答案.
【详解】解: 与关于直线对称,矩形
矩形
为的中点,
如图, 四边形都是矩形,
设 则
解得: 经检验:是原方程的根,但不合题意,舍去,
故答案为:
【点睛】本题考查的是矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,分式方程的解法,掌握以上知识是解题的关键.
13.(2022·海南·中考真题)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);(3)求此时无人机距离地面的高度.
【答案】(1)75;60(2)米(3)110米
【分析】(1)根据平角的定义求,过点A作于点E,再利用三角形内角和求;
(2)在中,求出DE的长度再根据计算即可;
(3)作于点G,交于点F,证明即可.
(1)过点A作于点E,
由题意得:

(2)由题意得:米,.在中,,
∴,∴
∴楼的高度为米.
(3)作于点G,交于点F,
则∵,∴.
∵,∴.∵,∴.
∵,∴.∴.∴.
∴(AAS).∴.∴
∴无人机距离地面的高度为110米.
【点睛】此题考查了解直角三角形的应用-仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.
14.(2022·湖南常德·中考真题)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道米,弧形跳台的跨度米,顶端到的距离为40米,,,,.求此大跳台最高点距地面的距离是多少米(结果保留整数).(参考数据:,,,,,,,,)
【答案】70
【分析】过点作,交于点,则四边形是矩形,可得,在中,求得,根据,,求得,进而求得,根据即可求解.
【详解】如图,过点作,交于点,则四边形是矩形,

,,在中,米,
,,,
,解得,
顶端到的距离为40米,即米米.
米.
【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.
15.(2022·浙江绍兴·中考真题)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)
【答案】(1)47°(2)3.3米
【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;
(2)分别求出和的正切值,用表示出和,得到一个只含有的关系式,再解答即可.
(1)解:,,,
答:的度数是.
(2)解:在Rt△ABC中,,∴.
同理,在Rt△ADC中,有.
∵,∴.∴,∴(米).
答:表AC的长是3.3米.
【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.
16.(2022·浙江金华·中考真题)图1是光伏发电场景,其示意图如图2,为吸热塔,在地平线上的点B,处各安装定日镜(介绍见图3).绕各中心点旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知,在点A观测点F的仰角为.
(1)点F的高度为______m.(2)设,则与的数量关系是_______.
【答案】 9
【分析】(1)过点A作AG⊥EF,垂足为G,证明四边形ABEG是矩形,解直角三角形AFG,确定FG,EG的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.
【详解】(1)过点A作AG⊥EF,垂足为G.
∵∠ABE=∠BEG=∠EGA=90°,
∴四边形ABEG是矩形,∴EG=AB=1m,AG=EB=8m,
∵∠AFG=45°,∴FG=AG=EB=8m,∴EF=FG+EG=9(m).故答案为:9;
(2).理由如下:∵∠E=∠EG=∠EG=90°,
∴四边形EG是矩形,∴EG==1m,G=E=,
∴tan∠FG=,∴∠FG=60°,∠FG=30°,
根据光的反射原理,不妨设∠FAN=2m,∠FM=2n,
∵ 光线是平行的,∴AN∥M,∴∠GAN=∠GM,∴45°+2m=30°+2n,解得n-m=7.5°,
根据光路图,得,∴,
故,故答案为: .
【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.
17.(2021·湖南怀化市·中考真题)政府将要在某学校大楼前修一座大桥.如图,宋老师测得大楼的高是20米,大楼的底部D处与将要修的大桥BC位于同一水平线上,宋老师又上到楼顶A处测得B和C的俯角,分别为和,宋老师说现在我能算出将要修的大桥BC的长了.同学们:你知道宋老师是怎么算的吗?请写出计算过程(结果精确到0.1米).其中,,,,,
【答案】41.7米
【分析】根据AE∥DB,确定∠ABD=67°,∠ACD=22°,利用正切函数求得DB,DC的长度即可求解.
【详解】如图,∵AE∥DB, ∴∠ABD=67°,∠ACD=22°,
∵tan∠ABD=,tan∠ACD=,∴DB==,DC==50,
∴BC=DC-DB=50-≈41.7(米).
【点睛】本题考查了俯角的意义,解直角三角形,准确理解俯角的意义,熟练运用三角函数是解题的关键.
18.(2021·山东威海市·中考真题)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).
(参考数据:,,,,,)
【答案】路灯的高度为13.4m.
【分析】延长AC交PQ于点E,交MN于点F,由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN,设路灯的高度为xm,则MN=PQ= xm,MF=PE=x-1.2;在Rt△AFM中求得,即可得;
在Rt△CEP中,可得,由此即可求得路灯的高度为13.4m.
【详解】延长AC交PQ于点E,交MN于点F,
由题意可得,AB=CD=EQ=FN=1.2,∠PEC=∠MFA=90°,∠MAF=10°,∠PCE=27°,AC=10,AE=BQ=EF=QN,
设路灯的高度为xm,则MN=PQ= xm,MF=PE=x-1.2,
在Rt△AFM中,∠MAF=10°,MF= x-1.2,,
∴,∴,∴;
∴CE=AE-AC= -10,在Rt△CEP中,∠PCE=27°,CE= -10,,
∴,解得x≈13.4,∴路灯的高度为13.4m.答:路灯的高度为13.4m.
【点睛】本题考查了解直角三角形的应用,构造直角三角形,熟练运用三角函数解直角三角形是解决问题的关键.
19.(2021·四川泸州市·中考真题)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
【答案】(1)观测点B与C点之间的距离为50海里;(2)救援船到达C点需要的最少时间为小时.
【分析】(1)过C作CE⊥AB于E,分别在Rt△ACE和Rt△BCE中,解直角三角形即可求解;(2)过C作CF⊥BD,交DB延长线于F,求得四边形BFCE为矩形,在Rt△CDF中,利用勾股定理即可求解.
【详解】(1)过C作CE⊥AB于E,由题意得:∠CAE=45°,∠CBE=90°-60°=30°,AC=25,
在Rt△ACE中,AE=CE=AC=25=25(海里),
在Rt△BCE中,BC=2CE=50(海里),BE==25 (海里),
∴观测点B与C点之间的距离为50海里;
(2)过C作CF⊥BD,交DB延长线于F,∵CE⊥AB,CF⊥BD,∠FBE=90°,∴四边形BFCE为矩形,
∴CF=BE=25 (海里),BF=CE=25(海里),在Rt△CDF中,CF=25 (海里),DF=55(海里),
∴CD=70(海里),救援船到达C点需要的最少时间为(小时).

【点睛】本题考查了解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20.(2021·江苏盐城市·中考真题)某种落地灯如图1所示,为立杆,其高为;为支杆,它可绕点旋转,其中长为;为悬杆,滑动悬杆可调节的长度.支杆与悬杆之间的夹角为.(1)如图2,当支杆与地面垂直,且的长为时,求灯泡悬挂点距离地面的高度;(2)在图2所示的状态下,将支杆绕点顺时针旋转,同时调节的长(如图3),此时测得灯泡悬挂点到地面的距离为,求的长.(结果精确到,参考数据:,,,,,)
【答案】(1)点距离地面113厘米;(2)长为58厘米
【分析】(1)过点作交于,利用60°三角函数可求FC,根据线段和差求即可;(2)过点作垂直于地面于点,过点作交于点,过点作交于点,可证四边形ABGN为矩形,利用三角函数先求,利用MG与CN的重叠部分求,然后求出CM,利用三角函数即可求出CD.
【详解】解:(1)过点作交于,
∵,∴,
∴,答:点距离地面113厘米;
(2)过点作垂直于地面于点,过点作交于点,
过点作交于点,∴∠BAG=∠AGN=∠BNG=90°,
∴四边形ABGN为矩形,∴AB=GN=84(cm),
∵,将支杆绕点顺时针旋转,∴∠BCN=20°,∠MCD=∠BCD-∠BCN=40°,
∴,,,∴CG=CN+NG=50.76+84=134.76(cm),
∴,
∵,∴,
∵,∴,,,答:长为58厘米.
【点睛】本题考查解直角三角形应用,矩形的判定与性质,掌握锐角三角函数的定义,矩形判定与性质是解题关键.
21.(2021·江西中考真题)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳膊,,肘关节与枪身端点之间的水平宽度为(即的长度),枪身.
图1
(1)求的度数;(2)测温时规定枪身端点与额头距离范围为.在图2中,若测得,小红与测温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据:,,,)
【答案】(1)∠ABC的度数为113.6;(2)枪身端点A与小红额头的距离在规定范围内.理由见解析
【分析】(1)过B作BK⊥MP于点K,在Rt△BMK中,利用三角形函数的定义求得∠BMK,即可求解;(2)延长PM交FG于点H,∠NMH,在Rt△NMH中,利用三角形函数的定义即可求得的长,比较即可判断.
【详解】解:(1)过B作BK⊥MP于点K,由题意可知四边形ABKP为矩形,
∴MK=MP-AB=25.3-8.5=16.8(cm),在Rt△BMK中,,
∴∠BMK,∴∠MBK=90-=23.6,
∴∠ABC=23.6+90=113.6,答:∠ABC的度数为113.6;
(2)延长PM交FG于点H,由题意得:∠NHM=90,∴∠BMN,∠BMK,
∴∠NMH,在Rt△NMH中,,
∴(cm),∴枪身端点A与小红额头的距离为(cm),
∵,∴枪身端点A与小红额头的距离在规定范围内.
【点睛】本题考查了解直角三角形的实际应用,熟记锐角三角函数的定义是解答此题的关键.
22.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A离岸边,即.海面与地面平行且相距,即.(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线与海面垂直,鱼竿与地面的夹角.求点O到岸边的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,点O恰好位于海面.求点O到岸边的距离.(参考数据:,,,,,)
【答案】(1)8.1m;(2)4.58m
【分析】(1)过点作,垂足为,延长交于点,构建和,在中,根据三角函数的定义与三角函数值求出BE,AE;再用求出BF,在中,根据三角函数的定义与三角函数值求出FC,用;(2)过点作,垂足为,延长交于点,构建和,在中,根据53°和AB的长求出BM和AM,利用BM+MN求出BN,在中利用勾股定理求出ON,最后用HN+ON求出OH.
【详解】
(1)过点作,垂足为,延长交于点,则,垂足为.
由,∴,∴,即,
∴,由,∴,
∴,即,∴.
又,∴,∴,即,
∴,即到岸边的距离为.
(2)过点作,垂足为,延长交于点,则,垂足为.
由,∴,∴,
即,∴.
由,∴,∴,
即,∴.
∴,
∴,即点到岸边的距离为.
【点睛】本题以钓鱼为背景,考查了学生运用三角函数知识解决实际问题的能力,解题关键在于构造合适的直角三角形,运用三角函数的运算,根据一边和一角的已知量,求其他边;再根据特殊的几何位置关系求线段长度.
23.(2022·四川自贡·中考真题)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心处,另一端系小重物.测量时,使支杆、量角器90°刻度线与铅垂线相互重合(如图①),绕点转动量角器,使观测目标与直径两端点共线(如图②),此目标的仰角.请说明两个角相等的理由.
(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点处测得顶端的仰角,观测点与树的距离为5米,点到地面的距离为1.5米;求树高.(,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端距离地面高度(如图④),同学们讨论,决定先在水平地面上选取观测点 (在同一直线上),分别测得点的仰角,再测得间的距离,点 到地面的距离均为1.5米;求(用表示).
【答案】(1)证明见解析(2)10.2米(3)米
【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;
(2)根据锐角三角函数和题意,可以计算出PH的长,注意最后的结果;
(3)根据锐角三角函数和题目中的数据,可以用含、m的式子表示出PH.
(1)证明:∵∴∴
(2)由题意得:KH=OQ=5米,OK=QH=1.5米,,
在Rt△POQ中tan∠POQ=∴
∴(米)故答案为:10.2米.
(3)由题意得:,
由图得: ,
∴∴∴
∴米故答案为:米
【点睛】本题考查解直角三角形中的仰角、俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.
24.(2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
①如图2,当时,试判断重叠部分的形状,并说明理由;
②如图3,当时,求重叠部分四边形的面积(结果保留根号);
(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
(参考数据:)
【答案】(1)1,1,(2)①是等边三角形,理由见解析;②(3)
【分析】(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.利用全等三角形的性质证明即可;(2)①结论:△OMN是等边三角形.证明OM=ON,可得结论;②如图3中,连接OC,过点O作OJ⊥BC于点J.证明△OCM≌△OCN(SAS),推出∠COM=∠CON=30°,解直角三角形求出OJ,即可解决问题;(3)如图4-1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.如图4-2中,当CM=CN时,S2最大.分别求解即可.
(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;
当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;
一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.
理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC于点N.
∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,
∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,
∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,
∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,∴S1=S.故答案为:1,1,S1=S.
(2)①如图2中,结论:△OMN是等边三角形.
理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,
∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;
②如图3中,连接OC,过点O作OJ⊥BC于点J.
∵CM=CN,∠OCM=∠OCN,OC=OC,∴△OCM≌△OCN(SAS),
∴∠COM=∠CON=30°,∴∠OMJ=∠COM+∠OCM=75°,∵OJ⊥CB,∴∠JOM=90°-75°=15°,
∵BJ=JC=OJ=1,∴JM=OJ tan15°=2-,∴CM=CJ-MJ=1-(2-)=-1,
∴S四边形OMCN=2××CM×OJ=-1.
(3)如图4,将沿翻折得到,则,此时则当在上时,比四边形的面积小,

设,则当最大时,最小,,即时,最大,
此时垂直平分,即,则,如图5中,过点O作OQ⊥BC于点Q,
,BM=CN当BM=CN时,△OMN的面积最小,即S2最小.
在Rt△MOQ中,MQ=OQ tan=tan,∴MN=2MQ=2tan,∴S2=S△OMN=×MN×OQ=tan.
如图6中,同理可得,当CM=CN时,S2最大.
则△COM≌△CON,∴∠COM=,
∵∠COQ=45°,∴∠MOQ=45°-,QM=OQ tan(45°-)=tan(45°-),
∴MC=CQ-MQ=1-tan(45°-),∴S2=2S△CMO=2××CM×OQ=1-tan(45°-).
【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题18 解直角三角形 考场演练
【考场演练1】热点必刷
1.(2022·广西贵港·中考真题)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
2.(2022·吉林长春·中考真题)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,垂直地面,垂足为点D,,垂足为点C.设,下列关系式正确的是( )
A. B. C. D.
3.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若.,则的值为( )
A. B. C. D.
4.(2023·浙江中考模拟)如图,矩形的对角线交于点O,已知则下列结论错误的是( )
A. B. C. D.
5.(2021·浙江金华市·中考真题)如图是一架人字梯,已知米,AC与地面BC的夹角为,则两梯脚之间的距离BC为( )
A.米 B.米 C.米 D.米
6.(2021·浙江杭州市·中考真题)sin30°的值为_____.
7.(2022·浙江嘉兴·中考真题)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.
8.(2022·江苏连云港·中考真题)如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则_________.
9.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为_______cm(结果保留根号).
10.(2022·辽宁大连·中考真题)如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为,测得白塔顶部C的仰角的为.索道车从A处运行到B处所用时间的为5分钟.(1)索道车从A处运行到B处的距离约为________米;(2)请你利用小明测量的数据,求白塔的高度(结果取整数).(参考数据:)
11.(2022·四川广安·中考真题)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.75
12.(2022·湖北恩施·中考真题)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB的长(参考数据:,,结果精确到1m).
13.(2022·四川遂宁·中考真题)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角,台阶AB长26米,台阶坡面AB的坡度,然后在点B处测得塔楼顶端点E的仰角,则塔顶到地面的高度EF约为多少米.(参考数据:,,,)
14.(2022·贵州遵义·中考真题)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,是灯杆,是灯管支架,灯管支架与灯杆间的夹角.综合实践小组的同学想知道灯管支架的长度,他们在地面的点处测得灯管支架底部的仰角为60°,在点处测得灯管支架顶部的仰角为30°,测得m,m(,,在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度的长(结果保留根号);
(2)求灯管支架的长度(结果精确到0.1m,参考数据:).
15.(2022·山西·中考真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:).
16.(2022·江苏泰州·中考真题)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少 (结果精确到0.1 m,参考数据:sin34°≈0.56, tan34°≈0.68,tan56°≈1.48)
17.(2021·浙江台州·中考真题)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地l,活动杆CD固定在支撑杆上的点E处,若∠AED=48°,BE=110 cm,DE=80 cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈1. 11)
18.(2021·浙江宁波市·中考真题)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点的位置,且A,B,三点共线,,B为中点,当时,伞完全张开.
(1)求的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:)
19.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,
(1)转动连杆BC,手臂CD,使,,如图2,求手臂端点D离操作台的高度DE的长(精确到1cm,参考数据:,).(2)物品在操作台上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
20.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得,,.
(1)椅面CE的长度为_________cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角的度数达到最小值时,A,B两点间的距离为________cm(结果精确到0.1cm).(参考数据:,,)
21.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,为喷嘴,为按压柄,为伸缩连杆,和为导管,其示意图如图2,,,.当按压柄按压到底时,转动到,此时(如图3).
(1)求点转动到点的路径长;(2)求点到直线的距离(结果精确到).
(参考数据:,,,,,)
22.(2022·湖南怀化·中考真题)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上,C村在B村的正东方向且两村相距2.4千米.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明. (参考数据:≈1.73,≈1.41)
23.(2022·浙江嘉兴·中考真题)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知,,,,.(结果精确到0.1,参考数据:,,,,,)
(1)连结,求线段的长.(2)求点A,B之间的距离.
23.(2021·江苏徐州市·中考真题)如图,斜坡的坡角,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点,过其另一端安装支架,所在的直线垂直于水平线,垂足为点为与的交点.已知,前排光伏板的坡角.
(1)求的长(结果取整数);(2)冬至日正午,经过点的太阳光线与所成的角.后排光伏板的前端在上.此时,若要后排光伏板的采光不受前排光伏板的影响,则的最小值为多少(结果取整数)?参考数据:
三角函数锐角 13° 28° 32°
0.22 0.47 0.53
0.97 0.88 0.85
0.23 0.53 0.62
24.(2022·浙江宁波·中考真题)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.
(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
【考场演练2】重难点必刷
1.(2022·浙江杭州·中考真题)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )
A. B. C. D.
2.(2022·四川广元·中考真题)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为(  )
A. B. C. D.
3.(2021·四川乐山市·中考真题)如图,已知点,点为直线上的一动点,点,,于点,连接.若直线与正半轴所夹的锐角为,那么当的值最大时,的值为________.
4.(2021·四川绵阳·中考真题)在直角中,,,的角平分线交于点,且,斜边的值是______.
5.(2022·山东泰安·中考真题)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为______(结果精确到).
6.(2022·天津·中考真题)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上.
(Ⅰ)线段的长等于___________;
(Ⅱ)若点M,N分别在射线上,满足且.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)___________.
7.(2022·四川凉山·中考真题)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为_______.
8.(2022·江苏常州·中考真题)如图,在四边形中,,平分.若,,则______.
9.(2022·湖南·中考真题)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形的面积是100,小正方形的面积是4,那么__.
10.(2022·山东青岛·中考真题)如图,已知的平分线交于点E,且.将沿折叠使点C与点E恰好重合.下列结论正确的有:__________(填写序号) ① ②点E到的距离为3 ③ ④
11.(2022·贵州黔东南·中考真题)如图,校园内有一株枯死的大树,距树12米处有一栋教学楼,为了安全,学校决定砍伐该树,站在楼顶处,测得点的仰角为45°,点的俯角为30°,小青计算后得到如下结论:①米;②米;③若直接从点处砍伐,树干倒向教学楼方向会对教学楼有影响;④若第一次在距点的8米处的树干上砍伐,不会对教学楼造成危害.其中正确的是_______.(填写序号,参考数值:,)
12.(2021·浙江宁波市·中考真题)如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为__________.
13.(2022·海南·中考真题)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);(3)求此时无人机距离地面的高度.
14.(2022·湖南常德·中考真题)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道米,弧形跳台的跨度米,顶端到的距离为40米,,,,.求此大跳台最高点距地面的距离是多少米(结果保留整数).(参考数据:,,,,,,,,)
15.(2022·浙江绍兴·中考真题)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)
16.(2022·浙江金华·中考真题)图1是光伏发电场景,其示意图如图2,为吸热塔,在地平线上的点B,处各安装定日镜(介绍见图3).绕各中心点旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知,在点A观测点F的仰角为.
(1)点F的高度为______m.(2)设,则与的数量关系是_______.
17.(2021·湖南怀化市·中考真题)政府将要在某学校大楼前修一座大桥.如图,宋老师测得大楼的高是20米,大楼的底部D处与将要修的大桥BC位于同一水平线上,宋老师又上到楼顶A处测得B和C的俯角,分别为和,宋老师说现在我能算出将要修的大桥BC的长了.同学们:你知道宋老师是怎么算的吗?请写出计算过程(结果精确到0.1米).其中,,,,,
18.(2021·山东威海市·中考真题)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).
(参考数据:,,,,,)
19.(2021·四川泸州市·中考真题)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
20.(2021·江苏盐城市·中考真题)某种落地灯如图1所示,为立杆,其高为;为支杆,它可绕点旋转,其中长为;为悬杆,滑动悬杆可调节的长度.支杆与悬杆之间的夹角为.(1)如图2,当支杆与地面垂直,且的长为时,求灯泡悬挂点距离地面的高度;(2)在图2所示的状态下,将支杆绕点顺时针旋转,同时调节的长(如图3),此时测得灯泡悬挂点到地面的距离为,求的长.(结果精确到,参考数据:,,,,,)
21.(2021·江西中考真题)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳膊,,肘关节与枪身端点之间的水平宽度为(即的长度),枪身.(1)求的度数;(2)测温时规定枪身端点与额头距离范围为.在图2中,若测得,小红与测温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据:,,,)
图1
22.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A离岸边,即.海面与地面平行且相距,即.(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线与海面垂直,鱼竿与地面的夹角.求点O到岸边的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,点O恰好位于海面.求点O到岸边的距离.(参考数据:,,,,,)
23.(2022·四川自贡·中考真题)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心处,另一端系小重物.测量时,使支杆、量角器90°刻度线与铅垂线相互重合(如图①),绕点转动量角器,使观测目标与直径两端点共线(如图②),此目标的仰角.请说明两个角相等的理由.
(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点处测得顶端的仰角,观测点与树的距离为5米,点到地面的距离为1.5米;求树高.(,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端距离地面高度(如图④),同学们讨论,决定先在水平地面上选取观测点 (在同一直线上),分别测得点的仰角,再测得间的距离,点 到地面的距离均为1.5米;求(用表示).
24.(2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
①如图2,当时,试判断重叠部分的形状,并说明理由;
②如图3,当时,求重叠部分四边形的面积(结果保留根号);
(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
(参考数据:)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录