专题19 图形的变换(轴对称、平移与旋转)-2023年中考一轮复习【高频考点】(讲义+练习)(浙江专用)(解析版)

文档属性

名称 专题19 图形的变换(轴对称、平移与旋转)-2023年中考一轮复习【高频考点】(讲义+练习)(浙江专用)(解析版)
格式 zip
文件大小 17.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-04-28 21:31:56

文档简介

中小学教育资源及组卷应用平台
专题19 图形的变换(轴对称、平移与旋转)
【考情预测】
该板块知识以考查平面几何的三大变换的基本运用为主,年年都有考查,分值在12分左右。预计2023年浙江各地中考还将继续考查这些知识点,考查形式主要有选填题、作图题、也可能综合题结合出现。这三大变换贯穿于初中所学的平面几何之中,利用平移、旋转、对称能解决三角形、四边形、圆、二次函数、反比例函数的性质等问题,利用变换在解决问题时往往能起到化繁为简的功效,激活思维,让人茅塞顿开。
【考点梳理】
一、轴对称图形与轴对称
轴对称图形 轴对称
图形
定义 如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴 如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴
性质 对应线段相等 AB=AC AB=A′B′,BC=B′C′,AC=A′C′
对应角相等 ∠B=∠C ∠A=∠A′,∠B=∠B′,∠C=∠C′
对应点所连的线段被对称轴垂直平分
区别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴
关系 (1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称 (1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形
1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.
2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.
【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.
3.作某点关于某直线的对称点的一般步骤
1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.
4.作已知图形关于某直线的对称图形的一般步骤
1)作出图形的关键点关于这条直线的对称点;
2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.
二、图形的平移
1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.
2.三大要素: 一是平移的起点,二是平移的方向,三是平移的距离.
3.性质: 1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.
4.作图步骤: 1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.
三、图形的旋转
1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.
2.三大要素:旋转中心、旋转方向和旋转角度.
3.性质:
1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;
3)旋转前后的图形全等.
4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.
【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.
四、中心对称图形与中心对称
中心对称图形 中心对称
图形
定义 如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心 如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称
性质 对应点 点A与点C,点B与点D 点A与点A′,点B与点B′,点C与点C′
对应线段 AB=CD,AD=BC AB=A′B′,BC=B′C′,AC=A′C′
对应角 ∠A=∠C∠B=∠D ∠A=∠A′,∠B=∠B′,∠C=∠C′
区别 中心对称图形是指具有某种特性的一个图形 中心对称是指两个图形的关系
联系 把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称 把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形
常见的中心对称图形
平行四边形、矩形、菱形、正方形、正六边形、圆等.
注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.
【重难点突破】
考点1. 轴对称
【解题技巧】
轴对称图形与轴对称的区别与联系
区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.
联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.
【典例精析】
例1.(2022·内蒙古通辽·中考真题)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
【答案】A
【分析】根据轴对称图形的定义,即可求解.
【详解】解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;故选:A
【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
例2.(2022·山东威海·中考真题)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )
A.A点 B.B点 C.C点 D.D点
【答案】B
【分析】根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.
【详解】连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:
由图可得MN是法线,为入射角,因为入射角等于反射角,且关于MN对称 由此可得反射角为,所以光线自点P射入,经镜面EF反射后经过的点是B 故选:B.
【点睛】本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.
【变式训练】
变式1.(2022·自贡·中考真题)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是( )
A. B. C. D.
【答案】D
【分析】根据轴对称图形的定义判断即可.
【详解】∵不是轴对称图形,∴A不符合题意;
∵不是轴对称图形,∴B不符合题意;
∵不是轴对称图形,∴C不符合题意;
∵是轴对称图形,∴D符合题意;故选D.
【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.
变式2.(2022·湖南邵阳·中考真题)下列四种图形中,对称轴条数最多的是( )
A.等边三角形 B.圆 C.长方形 D.正方形
【答案】B
【分析】分别求出各个图形的对称轴的条数,再进行比较即可.
【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.
【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.
变式3.(2022·湖南湘潭·中考真题)如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,,则_________.
【答案】40°##40度
【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解.
【详解】解:依题意,,
∵,,,
∴,.故答案为:40.
【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.
考点2. 利用轴对称求最值
【解题技巧】
对称问题,包括折叠问题,三角形、四边形、圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
【典例精析】
例1.(2022·四川眉山·中考真题)如图,点为矩形的对角线上一动点,点为的中点,连接,,若,,则的最小值为________.
【答案】6
【分析】作点B关于AC的对称点,交AC于点F,连接交AC于点P,则的最小值为的长度;然后求出和BE的长度,再利用勾股定理即可求出答案.
【详解】解:如图,作点B关于AC的对称点,交AC于点F,连接交AC于点P,则的最小值为的长度;
∵AC是矩形的对角线,∴AB=CD=4,∠ABC=90°,在直角△ABC中,,,
∴,∴,由对称的性质,得,,
∴,∴∵,,
∴△BEF是等边三角形,∴,∴是直角三角形,
∴,∴的最小值为6;故答案为:6.
【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P使得有最小值.
例2.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
【答案】
【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.
【详解】解:作点P关于CE的对称点P′,
由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,
∵MN+NP=MN+NP′≤MF,∴MN+NP的最小值为MF的长,
连接DG,DM,由折叠的性质知CE为线段 DM的垂直平分线,
∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE, ∴DO=,∴EO=,
∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,
∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,
∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,
∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM= DE=1,∴CG=,
∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,
∴,即, ∴FG=,∴MF=1+=,∴MN+NP的最小值为.故答案为:.
【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.
【变式训练】
变式1.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是( )
A. B. C. D.
【答案】A
【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.
【详解】解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:
连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可知:,,∠N′OQ=∠M′OB=30°,
∴∠NON′=60°,,∴△ONN′为等边三角形,△OMM′为等边三角形,
∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′=.故选:A.
【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.
变式2.(2022·四川自贡·中考真题)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.
【答案】
【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.
【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,
∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,
∵CH=EF=1, ∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,
∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1∴DG′=AD+AG'=2+1=3,DH=4-1=3,
∴,即的最小值为.故答案为:
【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.
变式3.(2022·广西贺州·中考真题)如图,在矩形ABCD中,,E,F分别是AD,AB的中点,的平分线交AB于点G,点P是线段DG上的一个动点,则的周长最小值为__________.
【答案】##
【分析】在CD上取点H,使DH=DE,连接EH,PH,过点F作FK⊥CD于点K,可得DG垂直平分EH,从而得到当点F、P、H三点共线时,的周长最小,最小值为FH+EF,再分别求出EF和FH,即可求解.
【详解】解:如图,在CD上取点H,使DH=DE,连接EH,PH,过点F作FK⊥CD于点K,
在矩形ABCD中,∠A=∠ADC=90°,AD=BC=6,CD=AB=8,∴△DEH为等腰直角三角形,
∵DG平分∠ADC,∴DG垂直平分EH,∴PE=PH,
∴的周长等于PE+PF+EF=PH+PF+EF≥FH+EF,
∴当点F、P、H三点共线时,的周长最小,最小值为FH+EF,
∵E,F分别是AD,AB的中点,∴AE=DE=DH=3,AF=4,∴EF=5,
∵FK⊥CD,∴∠DKF=∠A=∠ADC=90°,∴四边形ADKF为矩形,
∴DK=AF=4,FK=AD=6,∴HK=1,∴,
∴FH+EF=,即的周长最小为.故答案为:
【点睛】本题主要考查了最短距离问题,矩形的判定和性质,勾股定理等知识,明确题意,准确得到当点F、P、H三点共线时,的周长最小,最小值为FH+EF是解题的关键.
考点3. 平移
【解题技巧】
1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.
2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.
3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.
平移问题,包括直线(线段)的平移问题;曲线的平移问题;三角形的平移问题;四边形的平移问题;其他曲面的平移问题。
【典例精析】
例1.(2022·浙江湖州·中考真题)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是( )
A.2cm B.3cm C.4cm D.5cm
【答案】C
【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.
【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,
∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.
【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
例2.(2022·山东临沂·中考真题)如图,在平面直角坐标系中,的顶点A,B的坐标分别是,.平移得到,若点的对应点的坐标为,则点的对应点的坐标是_________.
【答案】
【分析】根据点A坐标及其对应点的坐标的变化规律可得平移后对应点的横坐标减小1,纵坐标减小2,即可得到答案.
【详解】平移得到,点的对应点的坐标为,
向左平移了1个单位长度,向下平移了2个单位长度,
即平移后对应点的横坐标减小1,纵坐标减小2,
的对应点的坐标是,故答案为:.
【点睛】本题考查了平移坐标的变化规律,即左减右加,上加下减,熟练掌握知识点是解题的关键.
【变式训练】
变式1.(2022·广西·中考真题)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A. B. C. D.
【答案】D
【分析】根据平移的特点分析判断即可.
【详解】根据题意,得不能由平移得到,故A不符合题意;
不能由平移得到,故B不符合题意;
不能由平移得到,故C不符合题意;
能由平移得到,故D符合题意;故选D.
【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.
变式2.(2022·广西·中考真题)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为( )
A.(3,-3) B.(3,3) C.(-1,1) D.(-1,3)
【答案】D
【分析】根据图形的平移性质求解.
【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.
【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.
变式3.(2020·江苏镇江市·中考真题)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于_____.
【答案】
【分析】取的中点,的中点,连接,,,,根据平移的性质和三角形的三边关系即可得到结论.
【详解】解:取的中点,的中点,连接,,,,
将平移5个单位长度得到△,,,
点、分别是、的中点,,,
即,的最小值等于,故答案为:.
【点睛】本题考查了平移的性质,三角形的三边关系,熟练掌握平移的性质是解题的关键.
考点4.旋转
【解题技巧】通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.
旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形的旋转问题;其他图形的旋转问题.
【典例精析】
例1.(2022·江苏苏州·中考真题)如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为( )
A. B. C. D.
【答案】C
【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.
【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:
∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,
∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,
∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,
∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,
∴AE=OE OA=CD OA=1,∴,
在Rt△BCD中,,在Rt△AOB中,,
∵OB+BD=OD=m,∴,
化简变形得:3m4 22m2 25=0,解得:或(舍去),
∴,故C正确.故选:C.
【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.
例2.(2022·内蒙古呼和浩特·中考真题)如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,、交于点.若,则的度数是(用含的代数式表示)( )
A. B. C. D.
【答案】C
【分析】根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.
【详解】解:∵将绕点顺时针旋转得到,且
∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴,
∴,∴,
,故选:C.
【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.
例3.(2022·河南·中考真题)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )
A. B. C. D.
【答案】B
【分析】首先确定点A的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A的坐标即可.
【详解】解:正六边形ABCDEF边长为2,中心与原点O重合,轴,
∴AP=1, AO=2,∠OPA=90°,
∴OP==,∴A(1,),
第1次旋转结束时,点A的坐标为(,-1);
第2次旋转结束时,点A的坐标为(-1,);
第3次旋转结束时,点A的坐标为(,1);
第4次旋转结束时,点A的坐标为(1,);
∵将△OAP绕点O顺时针旋转,每次旋转90°,∴4次一个循环,
∵2022÷4=505……2,
∴经过第2022次旋转后,点A的坐标为(-1,),故选:B
【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.
【变式训练】
变式1.(2022·四川南充·中考真题)如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,,则为( )
A. B. C. D.
【答案】B
【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可.
【详解】∵,∴,
∵由旋转可知,∴,
答案:B.
【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题关键.
变式2.(2022·湖南常德·中考真题)如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是( )
A. B., C. D.
【答案】D
【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D.
【详解】A.∵将△ABC绕点C顺时针旋转60°得到△DEC,
∴∠BCE=∠ACD=60°,CB=CE,∴△BCE是等边三角形,∴BE=BC,故A正确;
B.∵点F是边AC中点,∴CF=BF=AF=AC,
∵∠BCA=30°,∴BA=AC,∴BF=AB=AF=CF,∴∠FCB=∠FBC=30°,
延长BF交CE于点H,则∠BHE=∠HBC+∠BCH=90°,
∴∠BHE=∠DEC=90°,∴BF//ED,∵AB=DE,∴BF=DE,故B正确.
C.∵BF∥ED,BF=DE,∴四边形BEDF是平行四边形,∴BC=BE=DF,
∵AB=CF, BC=DF,AC=CD,∴△ABC≌△CFD,∴,故C正确;
D.∵∠ACB=30°, ∠BCE=60°,∴∠FCG=30°,∴FG=CG,∴CG=2FG.
∵∠DCE=∠CDG=30°,∴DG=CG,∴DG=2FG.故D错误.故选D.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.
变式3.(2022·天津·中考真题)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A. B. C. D.
【答案】C
【分析】根据旋转的性质,对每个选项逐一判断即可.
【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,
∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;
∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,
∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;
∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,
∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,
∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;
∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.
【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.
变式4.(2021·山东中考真题)如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.
(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为 ;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.
【答案】(1)见解答;(2)①;②见解答;(3)是,∠MPN=30°.
【分析】(1)由旋转60°知,∠ABD=∠EBF、AB=AE、BD=BF,故由SAS证出全等即可;
(2)①由两点之间,线段最短知C、D、F、E共线时CD+DF+FE最小,且CD+DF+FE最小值为CE,再由∠ACB=90°,∠ABC=30°,AC=1求出BC和AB,再由旋转知AB=BE,∠CBE=90°,最后根据勾股定理求出CE即可;②先由△BDF为等边三角形得∠BFD=60°,再由C、D、F、E共线时CD+DF+FE最小,∠BFE=120°=∠BDA,最后ADF=∠ADB-∠BDF=120°-60°=60°,即证;
(3)由中位线定理知道MN∥AD且PN∥EF,再设∠BEF=∠BAD=α,∠PAN=β,则∠PNF=60°-α+β,∠FNM=∠FAD=60°+α-β,得∠PNM=120°.
【详解】解:(1)证明:∵∠DBF=∠ABE=60°,∴∠DBF-∠ABF=∠ABE-∠ABF,∴∠ABD=∠EBF,
在△BDA与△BFE中,,∴△BDA≌△BFE(SAS);
(2)①∵两点之间,线段最短,即C、D、F、E共线时CD+DF+FE最小,
∴CD+DF+FE最小值为CE,
∵∠ACB=90°,∠ABC=30°,AC=1,∴BE=AB=2,BC=,
∵∠CBE=∠ABC+∠ABE=90°,∴CE=,故答案为:;
②证明:∵BD=BF,∠DBF=60°,∴△BDF为等边三角形,即∠BFD=60°,
∵C、D、F、E共线时CD+DF+FE最小,∴∠BFE=120°,
∵△BDA≌△BFE,∴∠BDA=120°,∴∠ADF=∠ADB-∠BDF=120°-60°=60°,
∴∠ADF=∠BFD,∴AD∥BF;
(3)∠MPN的大小是为定值,理由如下:如图,连接MN,
∵M,N,P分别是DF,AF,AE的中点,∴MN∥AD且PN∥EF,
∵AB=BE且∠ABE=60°,∴△ABE为等边三角形,设∠BEF=∠BAD=α,∠PAN=β,
则∠AEF=∠APN=60°-α,∠EAD=60°+α,∴∠PNF=60°-α+β,∠FNM=∠FAD=60°+α-β,
∴∠PNM=∠PNF+∠FNM=60°-α+β+60°+α-β=120°,
∵△BDA≌△BFE,∴MN=AD=FE=PN,∴∠MPN=(180°-∠PNM)=30°.
【点睛】本题是三角形与旋转变换的综合应用,熟练掌握旋转的性质、三角形全等的判定与性质、平行线的判定、勾股定理的应用、中位线的性质及等腰、等边三角形的判定与性质是解题关键 .
考点5. 中心对称
【解题技巧】识别轴对称图形与中心对称图形:
①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.
【典例精析】
例1.(2022·湖南常德·中考真题)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是( )
A. B. C. D.
【答案】B
【分析】根据中心对称的概念对各图形分析判断即可得解.
【详解】解:A不是中心对称图形,故A错误;B是中心对称图形,故B正确;
C不是中心对称图形,故C错误;D不是中心对称图形,故D错误;故选B.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.
例2.(2022·湖南娄底·中考真题)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )
A. B. C. D.
【答案】D
【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.
【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.
【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.
【变式训练】
变式1.(2022·湖南永州·中考真题)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有(   )
①      ②           ③          ④
A.①②③ B.①②④ C.①③④ D.②③④
【答案】A
【分析】根据中心对称图形的定义判断即可;
【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A.
【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键.
变式2.(2022·江苏无锡·中考真题)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形 B.平行四边形 C.等边三角形 D.矩形
【答案】B
【分析】根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;
B、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;
C、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;
D、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.
【点睛】此题主要考查轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.
变式3.(2022·山西·中考真题)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是( )
A. B. C. D.
【答案】B
【分析】利用中心对称图形的定义直接判断.
【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,故选B.
【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
考点6. 图形设计及网格作图
【典例精析】
例1.(2022·黑龙江·中考真题)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.
(1)将先向左平移6个单位,再向上平移4个单位,得到,画出两次平移后的,并写出点的坐标;(2)画出绕点顺时针旋转90°后得到,并写出点的坐标;
(3)在(2)的条件下,求点旋转到点的过程中所经过的路径长(结果保留).
【答案】(1)见解析;(2)见解析;(3)点旋转到点所经过的路径长为
【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点旋转到点为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.
(1)解:如图所示△A1B1C1即为所求,;
(2)如图所示△A2B2C2即为所求,;
(3)∵∴点旋转到点所经过的路径长为.
【点睛】题目主要考查坐标与图形,图形的平移,旋转,勾股定理及弧长公式等,数量掌握运用这些知识点是解题关键.
例2.(2022·广西河池·中考真题)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).
(1)画出与△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为,并写出点B2的坐标.
【答案】(1)作图见解析(2)作图见解析
【分析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点连线得到△A1B1C1.
(2)把A、B、C的坐标都乘以-2得到A2、B2、C2的坐标,然后描点连线即可.
【解析】(1)如图,为所作.(2)如图,为所作,点B2的坐标为(-4,-6).
【点睛】本题考查位似变换、轴对称变换,解题的关键是注意位似中心及相似比、对称轴.
【变式训练】
变式1.(2021·浙江温州市·中考真题)如图与的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
(1)选一个四边形画在图2中,使点为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
【答案】(1)见解析;(2)见解析
【分析】(1)七巧板中有两个四边形,分别是正方形和平行四边形,根据题意可画出4种图形任意选一种即可,(2)七巧板中有五个等腰直角三角形,有直角边长 的两个,直角边长2 的两个,直角边长2 的一个,根据题意利用数形结合的思想解决问题即可.
【详解】解:(1)画法不唯一,当选四边形为正方形时可以是如图1或图2;当四边形式平行四边形时可以是图3或图4.
(2)画法不唯一,当直角边长为时,扩大即直角边长为利用勾股定理画出直角边长为直角三角形可以是如图5或图6
当直角边长为2时,扩大即直角边长为2利用勾股定理画出直角边长为2直角 三角形可以是如图7或图8等.
【点睛】本题考查基本作图,平移,二次根式的乘法,以及勾股定理的应用,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
变式2.(2021·安徽中考真题)如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上.(1)将向右平移5个单位得到,画出;
(2)将(1)中的绕点C1逆时针旋转得到,画出.
【答案】(1)作图见解析;(2)作图见解析.
【分析】(1)利用点平移的规律找出、、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可.
【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;
【点睛】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.
变式3.(2020·广西中考真题)如图,在平面直角坐标系中,的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把向左平移4个单位后得到对应的A1B1C1,请画出平移后的A1B1C1;
(2)把绕原点O旋转180°后得到对应的A2B2C2,请画出旋转后的A2B2C2;
(3)观察图形可知,A1B1C1与A2B2C2关于点(   ,   )中心对称.
【答案】(1)详见解析;(2)详见解析;(3)﹣2,0.
【分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.
【详解】解:(1)如图所示,分别确定平移后的对应点,得到A1B1C1即为所求;
(2)如图所示,分别确定旋转后的对应点,得到A2B2C2即为所求;
(3)由图可得,A1B1C1与A2B2C2关于点成中心对称.故答案为:﹣2,0.
【点睛】本题考查的是平移,旋转的作图,以及判断中心对称的对称中心的坐标,掌握以上知识是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题19 图形的变换(轴对称、平移与旋转)
【考情预测】
该板块知识以考查平面几何的三大变换的基本运用为主,年年都有考查,分值在12分左右。预计2023年浙江各地中考还将继续考查这些知识点,考查形式主要有选填题、作图题、也可能综合题结合出现。这三大变换贯穿于初中所学的平面几何之中,利用平移、旋转、对称能解决三角形、四边形、圆、二次函数、反比例函数的性质等问题,利用变换在解决问题时往往能起到化繁为简的功效,激活思维,让人茅塞顿开。
【考点梳理】
一、轴对称图形与轴对称
轴对称图形 轴对称
图形
定义 如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴 如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴
性质 对应线段相等 AB=AC AB=A′B′,BC=B′C′,AC=A′C′
对应角相等 ∠B=∠C ∠A=∠A′,∠B=∠B′,∠C=∠C′
对应点所连的线段被对称轴垂直平分
区别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴
关系 (1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称 (1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形
1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.
2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.
【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.
3.作某点关于某直线的对称点的一般步骤
1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.
4.作已知图形关于某直线的对称图形的一般步骤
1)作出图形的关键点关于这条直线的对称点;
2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.
二、图形的平移
1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.
2.三大要素: 一是平移的起点,二是平移的方向,三是平移的距离.
3.性质: 1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.
4.作图步骤: 1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.
三、图形的旋转
1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.
2.三大要素:旋转中心、旋转方向和旋转角度.
3.性质:
1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;
3)旋转前后的图形全等.
4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.
【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.
四、中心对称图形与中心对称
中心对称图形 中心对称
图形
定义 如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心 如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称
性质 对应点 点A与点C,点B与点D 点A与点A′,点B与点B′,点C与点C′
对应线段 AB=CD,AD=BC AB=A′B′,BC=B′C′,AC=A′C′
对应角 ∠A=∠C∠B=∠D ∠A=∠A′,∠B=∠B′,∠C=∠C′
区别 中心对称图形是指具有某种特性的一个图形 中心对称是指两个图形的关系
联系 把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称 把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形
常见的中心对称图形
平行四边形、矩形、菱形、正方形、正六边形、圆等.
注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.
【重难点突破】
考点1. 轴对称
【解题技巧】
轴对称图形与轴对称的区别与联系
区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.
联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.
【典例精析】
例1.(2022·内蒙古通辽·中考真题)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
例2.(2022·山东威海·中考真题)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )
A.A点 B.B点 C.C点 D.D点
【变式训练】
变式1.(2022·自贡·中考真题)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是( )
A. B. C. D.
变式2.(2022·湖南邵阳·中考真题)下列四种图形中,对称轴条数最多的是( )
A.等边三角形 B.圆 C.长方形 D.正方形
变式3.(2022·湖南湘潭·中考真题)如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,,则_________.
考点2. 利用轴对称求最值
【解题技巧】
对称问题,包括折叠问题,三角形、四边形、圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
【典例精析】
例1.(2022·四川眉山·中考真题)如图,点为矩形的对角线上一动点,点为的中点,连接,,若,,则的最小值为________.
例2.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
【变式训练】
变式1.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是( )
A. B. C. D.
变式2.(2022·四川自贡·中考真题)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.
变式3.(2022·广西贺州·中考真题)如图,在矩形ABCD中,,E,F分别是AD,AB的中点,的平分线交AB于点G,点P是线段DG上的一个动点,则的周长最小值为__________.
考点3. 平移
【解题技巧】
1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.
2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.
3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.
平移问题,包括直线(线段)的平移问题;曲线的平移问题;三角形的平移问题;四边形的平移问题;其他曲面的平移问题。
【典例精析】
例1.(2022·浙江湖州·中考真题)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是( )
A.2cm B.3cm C.4cm D.5cm
例2.(2022·山东临沂·中考真题)如图,在平面直角坐标系中,的顶点A,B的坐标分别是,.平移得到,若点的对应点的坐标为,则点的对应点的坐标是_________.
【变式训练】
变式1.(2022·广西·中考真题)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A. B. C. D.
变式2.(2022·广西·中考真题)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为( )
A.(3,-3) B.(3,3) C.(-1,1) D.(-1,3)
变式3.(2020·江苏镇江市·中考真题)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于_____.
考点4.旋转
【解题技巧】通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.
旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形的旋转问题;其他图形的旋转问题.
【典例精析】
例1.(2022·江苏苏州·中考真题)如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为( )
A. B. C. D.
例2.(2022·内蒙古呼和浩特·中考真题)如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,、交于点.若,则的度数是(用含的代数式表示)( )
A. B. C. D.
例3.(2022·河南·中考真题)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )
A. B. C. D.
【变式训练】
变式1.(2022·四川南充·中考真题)如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,,则为( )
A. B. C. D.
变式2.(2022·湖南常德·中考真题)如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是( )
A. B., C. D.
变式3.(2022·天津·中考真题)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A. B. C. D.
变式4.(2021·山东中考真题)如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.
(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为 ;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.
考点5. 中心对称
【解题技巧】识别轴对称图形与中心对称图形:
①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.
【典例精析】
例1.(2022·湖南常德·中考真题)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是( )
A. B. C. D.
例2.(2022·湖南娄底·中考真题)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )
A. B. C. D.
【变式训练】
变式1.(2022·湖南永州·中考真题)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有(   )
①      ②           ③          ④
A.①②③ B.①②④ C.①③④ D.②③④
变式2.(2022·江苏无锡·中考真题)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形 B.平行四边形 C.等边三角形 D.矩形
变式3.(2022·山西·中考真题)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是( )
A. B. C. D.
考点6. 图形设计及网格作图
【典例精析】
例1.(2022·黑龙江·中考真题)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.
(1)将先向左平移6个单位,再向上平移4个单位,得到,画出两次平移后的,并写出点的坐标;(2)画出绕点顺时针旋转90°后得到,并写出点的坐标;
(3)在(2)的条件下,求点旋转到点的过程中所经过的路径长(结果保留).
例2.(2022·广西河池·中考真题)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).
(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为,并写出点B2的坐标.
【变式训练】
变式1.(2021·浙江温州市·中考真题)如图与的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
(1)选一个四边形画在图2中,使点为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
变式2.(2021·安徽中考真题)如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上.(1)将向右平移5个单位得到,画出;
(2)将(1)中的绕点C1逆时针旋转得到,画出.
变式3.(2020·广西中考真题)如图,在平面直角坐标系中,的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把向左平移4个单位后得到对应的A1B1C1,请画出平移后的A1B1C1;
(2)把绕原点O旋转180°后得到对应的A2B2C2,请画出旋转后的A2B2C2;
(3)观察图形可知,A1B1C1与A2B2C2关于点(   ,   )中心对称.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题19 图形的变换(轴对称、平移与旋转) 考场演练
【考场演练1】热点必刷
1.(2022·浙江嘉兴·中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
A.1cm B.2cm C.(-1)cm D.(2-1)cm
【答案】D
【分析】先求出BD,再根据平移性质求得=1cm,然后由求解即可.
【详解】解:由题意,BD=cm,
由平移性质得=1cm,
∴点D,之间的距离为==()cm,故选:D.
【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.
2.(2022·湖南郴州·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】B
【分析】根据轴对称图形和中心对称图形的定义判断即可.
【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;
B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;
C、该图形不是轴对称图形,是中心对称图形,故C选项错误;
D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.
【点睛】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.
3.(2022·江苏常州·中考真题)在平面直角坐标系中,点A与点关于轴对称,点A与点关于轴对称.已知点,则点的坐标是( )
A. B. C. D.
【答案】D
【分析】直接利用关于x,y轴对称点的性质分别得出A,点坐标,即可得出答案.
【详解】解:∵点的坐标为(1,2),点A与点关于轴对称,∴点A的坐标为(1,-2),
∵点A与点关于轴对称,∴点的坐标是(-1,﹣2).故选:D.
【点睛】此题主要考查了关于x,y轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.
4.(2022·山东临沂·中考真题)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
【答案】D
【分析】根据轴对称图形和中心对称图形的概念进行判断即可.
【详解】A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,是中心对称图形,故本选项不合题意;
C.不是轴对称图形,是中心对称图形,故本选项不合题意;
D.既是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.
【点睛】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.
5.(2022·贵州遵义·中考真题)在平面直角坐标系中,点与点关于原点成中心对称,则的值为( )
A. B. C.1 D.3
【答案】C
【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得的值即可求解.
【详解】解:∵点与点关于原点成中心对称,
∴,故选C.
【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
6.(2022·山东泰安·中考真题)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A. B. C. D.
【答案】A
【详解】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
∵P1与P2关于原点对称,∴P2(2.8,3.6). 故选A.
点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
7.(2022·四川内江·中考真题)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
【答案】C
【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.
【详解】A.不是轴对称图形,也不是中心对称图形,故A错误;
B.不是轴对称图形,也不是中心对称图形,故B错误;
C.既是轴对称图形,也是中心对称图形,故C正确;
D.不是轴对称图形,也不是中心对称图形,故D错误.故选:C.
【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
8.(2022·四川内江·中考真题)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是(  )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
【答案】D
【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.
【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.
故选:D.
【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.
9.(2022·广西贵港·中考真题)若点与点关于y轴对称,则的值是( )
A. B. C.1 D.2
【答案】A
【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.
【详解】∵点与点关于y轴对称,∴a=-2,b=-1,∴a-b=-1,故选A.
【点睛】本题考查了关于y轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y轴对称的点纵坐标相等,横坐标互为相反数.
10.(2022·北京·中考真题)图中的图形为轴对称图形,该图形的对称轴的条数为( )
A. B. C. D.
【答案】D
【分析】根据题意,画出该图形的对称轴,即可求解.
【详解】解∶如图,
一共有5条对称轴.故选:D
【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
11.(2022·广西河池·中考真题)如图,在Rt△ABC中,,,,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
【答案】A
【分析】根据勾股定理定理求出AB,然后根据扇形的面积和三角形的面积公式求解.
【详解】解:∵,,,∴,
∴所扫过的面积为.故选:A.
【点睛】本题考查旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答关键.
12.(2022·上海·中考真题)有一个正n边形旋转后与自身重合,则n为( )
A.6 B.9 C.12 D.15
【答案】C
【分析】据选项求出每个选项对应的正多边形的中心角度数,与一致或有倍数关系的则符合题意.
【详解】如图所示,计算出每个正多边形的中心角,是的3倍,则可以旋转得到.
A.B.C.D.
观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合 故选C.
【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.
13.(2022·广西贵港·中考真题)如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.
【答案】
【分析】先求出,由旋转的性质,得到,,则,即可求出旋转角的度数.
【详解】解:根据题意,∵,∴,
由旋转的性质,则,,
∴,∴;
∴旋转角的度数是50°;故答案为:50°.
【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.
14.(2022·吉林·中考真题)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角后能够与它本身重合,则角可以为__________度.(写出一个即可)
【答案】60或120或180或240或300(写出一个即可)
【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.
【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角,
,角可以为或或或或,
故答案为:60或120或180或240或300(写出一个即可).
【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键.
15.(2022·吉林·中考真题)图①,图②均是的正方形网格,每个小正方形的顶点称为格点.其中点,,均在格点上.请在给定的网格中按要求画四边形.
(1)在图①中,找一格点,使以点,,,为顶点的四边形是轴对称图形;
(2)在图②中,找一格点,使以点,,,为顶点的四边形是中心对称图形.
【答案】(1)图见解析(2)图见解析
【分析】(1)以所在直线为对称轴,找出点的对称点即为点,再顺次连接点即可得;
(2)根据点平移至点的方式,将点进行平移即可得点,再顺次连接点即可得.
(1)解:如图①,四边形是轴对称图形.
(2)解:先将点向左平移2格,再向上平移1个可得到点,
则将点按照同样的平移方式可得到点,如图②,平行四边形是中心对称图形.
【点睛】本题考查了轴对称图形与中心对称图形、平移作图,熟练掌握轴对称图形与中心对称图形的概念是解题关键.
16.(2022·江苏常州·中考真题)如图,点在射线上,.如果绕点按逆时针方向旋转到,那么点的位置可以用表示.
(1)按上述表示方法,若,,则点的位置可以表示为______;
(2)在(1)的条件下,已知点的位置用表示,连接、.求证:.
【答案】(1)(3,37°) (2)见解析
【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.
(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);
(2)证明:如图,
∵,B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA= OB=3,
∴∠A′OB=∠AOB-∠AOA′=74°-37°=37°,∵OA′=OA′,
∴△AOA′≌△BOA′(SAS),∴A′A=A′B.
【点睛】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键.
17.(2022·湖北武汉·中考真题)已知四边形为矩形.点E是边的中点.请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.
(1)在图1中作出矩形的对称轴m,使;
(2)在图2中作出矩形的对称轴n:使.
【答案】(1)见解析 (2)见解析
【分析】(1)连接AC,BD,相交于点O,过O,E作直线m即可;
(2)由(1)知四边形ABFE为矩形,连接AF、BE交于点H,过O,H点作直线n即可.
(1)如图所示,直线m即为所求作
(2)如图所示,直线n即为所求作
【点睛】本题主要考查了求作矩形的对称轴,熟练掌握矩形的性质是解答此题的关键.
18.(2022·湖北荆州·中考真题)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.
(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.
【答案】(1)见解析(2)见解析
【分析】对于(1),以AC为公共边的有2个,以AB为公共边的有2个,以BC为公共边的有1个,一共有5个,作出图形即可;对于(2),△ABC是等腰直角三角形,以BC为对角线的菱形只有1个,作出图形即可.
(1)如图所示.
(2)如图所示.
【点睛】本题主要考查了作格点三角形和菱形,理解题意是解题的关键.
19.(2022·黑龙江哈尔滨·中考真题)如图,方格纸中每个小正方形的边长均为1,的顶点和线段的端点均在小正方形的顶点上.
(1)在方格纸中面出,使与关于直线对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段为一边的平行四边形(点G,点H均在小正方形的顶点上),且平行四边形的面积为4.连接,请直接写出线段的长.
【答案】(1)见解析(2)图见解析,
【分析】(1)根据轴对称的性质可得△ADC;(2)利用平行四边形的性质即可画出图形,利用勾股定理可得DH的长.
(1)如图 (2)如图,
【点睛】本题考查作图,轴对称变换,平行四边形的性质,勾股定理等知识,准确画出图形是解题的关键.
20.(2022·四川广安·中考真题)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)
【答案】见解析
【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可
【详解】解:如下图所示:
【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.
21.(2022·浙江温州·中考真题)如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形.
【答案】(1)见解析(2)见解析
【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;
(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.
(1)
画法不唯一,如图1或图2等.
(2)画法不唯一,如图3或图4等.
【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.
22.(2022·浙江丽水·中考真题)如图,在的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.
(1)如图1,作一条线段,使它是向右平移一格后的图形;
(2)如图2,作一个轴对称图形,使和是它的两条边;
(3)如图3,作一个与相似的三角形,相似比不等于1.
【答案】(1)画图见解析(2)画图见解析(3)画图见解析
【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;
(2)确定线段AB,AC关于直线BC对称的线段即可;(3)分别计算的三边长度,再利用相似三角形的对应边成比例确定的三边长度,再画出即可.
(1)解:如图,线段CD即为所求作的线段,
(2)如图,四边形ABDC是所求作的轴对称图形,
(3)如图,如图,即为所求作的三角形,
由勾股定理可得: 而
同理: 而
【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.
23.(2022·浙江绍兴·中考真题)如图,在△ABC中,∠ABC=40°, ∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.
(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.
【答案】(1)25° (2)①当点P在线段BE上时,2α-β=50°;②当点P在线段CE上时,2α+β=50°
【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根据AE平分∠BAC,P与E重合,可得∠ACD,从而α=∠ACB ∠ACD;(2)分两种情况:①当点P在线段BE上时,可得∠ADC=∠ACD=90° α,根据∠ADC+∠BAD=∠B+∠BCD,即可得2α β=50°;②当点P在线段CE上时,延长AD交BC于点F,由∠ADC=∠ACD=90° α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90° α=40°+α+β,即2α+β=50°.
(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,
∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;
(2)①如图1,当点P在线段BE上时,
∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;
②如图2,当点P在线段CE上时,延长AD交BC于点F,
∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,
∴90°-α=40°+α+β,∴2α+β=50°.
【点睛】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质.
【考场演练2】重难点必刷
1.(2022·贵州毕节)矩形纸片中,E为的中点,连接,将沿折叠得到,连接.若,,则的长是( )
A.3 B. C. D.
【答案】D
【分析】连接BF交AE于点G,根据对称的性质,可得AE垂直平分BF,BE=FE,BG=FG=,根据E为BC中点,可证BE=CE=EF,通过等边对等角可证明∠BFC=90°,利用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据计算即可.
【详解】连接BF,与AE相交于点G,如图,
∵将沿折叠得到∴与关于AE对称
∴AE垂直平分BF,BE=FE,BG=FG=
∵点E是BC中点∴BE=CE=DF=∴
∵∴∴
∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF
∴∠BFC=∠EFB+∠EFC=∴故选 D
【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.
2.(2022·湖南·中考真题)如图,点是等边三角形内一点,,,,则与的面积之和为( )
A. B. C. D.
【答案】C
【分析】将绕点B顺时针旋转得,连接,得到是等边三角形,再利用勾股定理的逆定理可得,从而求解.
【详解】解:将绕点顺时针旋转得,连接,
,,,是等边三角形, ,
∵,,,,
与的面积之和为.故选:C.
【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将与的面积之和转化为,是解题的关键.
3.(2022·广西·中考真题)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
【答案】B
【分析】先证,再求出AB的长,最后根据弧长公式求得.
【详解】解:,,
是绕点A逆时针旋转得到,,,
在中,,,
,,
,,
,的长=,故选:B.
【点睛】本题考查了图形的旋转变换,等腰三角形的性质,三角函数定义,弧长公式,正确运算三角函数定义求线段的长度是解本题的关键.
4.(2022·内蒙古包头·中考真题)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( )
A. B. C.3 D.2
【答案】C
【分析】如图,过作于 求解 结合旋转:证明 可得为等边三角形,求解 再应用锐角三角函数可得答案.
【详解】解:如图,过作于
由,
结合旋转:
为等边三角形,
∴A到的距离为3.故选C
【点睛】本题考查的是旋转的性质,含的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.
5.(2022·四川宜宾·中考真题)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是( )
A.①②④ B.①②③ C.①③④ D.①②③④
【答案】B
【分析】证明,即可判断①,根据①可得,由可得四点共圆,进而可得,即可判断②,过点作于,交的延长线于点,证明,根据相似三角形的性质可得,即可判断③,将绕点逆时针旋转60度,得到,则是等边三角形,根据当共线时,取得最小值,可得四边形是正方形,勾股定理求得, 根据即可判断④.
【详解】解:和都是等腰直角三角形,,
故①正确;
四点共圆,
故②正确;如图,过点作于,交的延长线于点,
,
,,
设,则,, 则
AH∥CE, 则;故③正确
如图,将绕点逆时针旋转60度,得到,则是等边三角形,
, 当共线时,取得最小值,
此时
,此时,
,,,,,
,平分,,四点共圆, ,
又,,,则四边形是菱形,
又,四边形是正方形,,
则,,,,
,,则,,
,,故④不正确,故选B.
【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.
6.(2022·浙江台州·中考真题)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为________;当点M的位置变化时,DF长的最大值为________.
【答案】
【分析】当点M与点B重合时,EF垂直平分AB,利用三角函数即可求得EF的长;
【详解】解:当点M与点B重合时,由折叠的性质知EF垂直平分AB,
∴AE=EB=AB=3,在Rt△AEF中,∠A=60°,AE=3,tan60°=,∴EF=3;
当AF长取得最小值时,DF长取得最大值,由折叠的性质知EF垂直平分AM,则AF=FM,
∴FM⊥BC时,FM长取得最小值,此时DF长取得最大值,
过点D作DG⊥BC于点C,则四边形DGMF为矩形,∴FM=DG,
在Rt△DGC中,∠C=∠A=60°,DC=AB=6,∴DG=DCsin60°=3,
∴DF长的最大值为AD-AF=AD-FM=AD-DG=6-3,故答案为:3;6-3.
【点睛】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.
7.(2022·河南·中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点处,得到扇形.若∠O=90°,OA=2,则阴影部分的面积为______.
【答案】
【分析】设与扇形交于点,连接,解,求得,根据阴影部分的面积为,即可求解.
【详解】如图,设与扇形交于点,连接,如图
是OB的中点, OA=2,=90°,将扇形AOB沿OB方向平移,
阴影部分的面积为
故答案为:
【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得是解题的关键.
8.(2022·河南·中考真题)如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
【答案】
【分析】连接,据题意可得,当∠ADQ=90°时,点在上,且,勾股定理求得即可.
【详解】如图,连接,
在Rt△ABC中,∠ACB=90°,,,,,
根据题意可得,当∠ADQ=90°时,点在上,且,,
在中,,故答案为:.
【点睛】本题考查旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.
9.(2022·广西贺州·中考真题)如图,在平面直角坐标系中,为等腰三角形,,点B到x轴的距离为4,若将绕点O逆时针旋转,得到,则点的坐标为__________.
【答案】
【分析】过B作于,过作轴于,构建,即可得出答案.
【详解】过B作于,过作轴于,
∴,∴,由旋转可知,,
∴,∴,∵,,,
∴,∴,,∵,∴,
∴,∴,∴.故答案为:.
【点睛】本题考查了旋转的性质以及如何构造全等三角形求得线段的长度,准确构造全等三角形求得线段长度是解题的关键.
10.(2022·山东潍坊·中考真题)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为___________.
【答案】:1
【分析】判定△AB′D′是等腰直角三角形,即可得出AB′=AD,再根据AB′= AB,再计算即可得到结论.
【详解】解:∵四边形ABCD是矩形,∴∠D=∠B=∠DAB=90°,
由操作一可知:∠DAB′=∠D′AB′=45°,∠AD′B′=∠D=90°,AD=AD′,
∴△AB′D′是等腰直角三角形,∴AD=AD′= B′D′,由勾股定理得AB′=AD,
又由操作二可知:AB′=AB,∴AD=AB,∴=,
∴A4纸的长AB与宽AD的比值为:1.故答案为::1.
【点睛】本题考查矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.
11.(2022·山东潍坊·中考真题)如图,在直角坐标系中,边长为2个单位长度的正方形绕原点O逆时针旋转,再沿y轴方向向上平移1个单位长度,则点的坐标为___________.
【答案】
【分析】连接OB,由题意可得∠=75°,可得出∠=30°,可求出的坐标,即可得出点的坐标.
【详解】解:如图:连接OB,,作⊥y轴
∵是正方形,OA=2∴∠COB=45°,OB=
∵绕原点O逆时针旋转∴∠=75°∴∠=30°
∵=OB=∴, ∴
∵沿y轴方向向上平移1个单位长度∴故答案为:
【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.
12.(2022·四川德阳·中考真题)如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
【答案】
【分析】根据D为AB中点,得到AD=CD=BD,即有∠A=∠DCA,根据翻折的性质有∠DCA=∠DCE,CE=AC,再根据CE⊥AB,求得∠A=∠BCE,即有∠BCE=∠ECD=∠DCA=30°,则有∠A=30°,在Rt△ACB中,即可求出AC,则问题得解.
【详解】∵∠ACB=90°,∴∠A+∠B=90°,
∵D为AB中点,∴在直角三角形中有AD=CD=BD,∴∠A=∠DCA,
根据翻折的性质有∠DCA=∠DCE,CE=AC,∵CE⊥AB,∴∠B+∠BCE=90°,
∵∠A+∠B=90°,∴∠A=∠BCE,∴∠BCE=∠ECD=∠DCA,
∵∠BCE+∠ECD+∠DCA=∠ACB=90°,∴∠BCE=∠ECD=∠DCA=30°∴∠A=30°,
∴在Rt△ACB中,BC=1,则有,∴,故答案为:.
【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE=∠ECD=∠DCA=30°是解答本题的关键.
13.(2022·浙江丽水·中考真题)一副三角板按图1放置,O是边的中点,.如图2,将绕点O顺时针旋转,与相交于点G,则的长是___________.
【答案】
【分析】BC交EF于点N,由题意得,,,,,BC=DF=12,根据锐角三角函数即可得DE,FE,根据旋转的性质得是直角三角形,根据直角三角形的性质得,即,根据角之间的关系得是等腰直角三角形,即cm,根据,得,即,解得,即可得.
【详解】解:如图所示,BC交EF于点N,
由题意得,,,,,BC=DF=12,
在中,,,
∵△ABC绕点O顺时针旋转60°,∴,
∴,∴,
∴是直角三角形,∴(cm),∴(cm),
∵,∴,∴是直角三角形,
∴,∴是等腰直角三角形,∴cm,
∵,,∴,
即,,,∴(cm),故答案为:.
【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.
14.(2022·湖北武汉·中考真题)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
(1)在图(1)中,,分别是边,与网格线的交点.先将点绕点旋转得到点,画出点,再在上画点,使;(2)在图(2)中,是边上一点,.先将绕点逆时针旋转,得到线段,画出线段,再画点,使,两点关于直线对称.
【答案】(1)作图见解析(2)作图见解析
【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出;
(2)取格点,作垂直平分线即可作出线段AH;利用垂直平分线的性质,证明三角形全等,作出,两点关于直线对称
(1)解:作图如下:
取格点,连接,且,所以四边形是平行四边形,连接 ,与AC的交点就是点E,所以BE=EF,所以点F即为所求的点;
连接CF,交格线于点M,因为四边形ABCF是平行四边形,连接DM交AC于一点,该点就是所求的G点;
(2)解:作图如下:
取格点D、E,连接DE,AC平行于DE,取格点R,连接BR并延长BR交DE于一点H,连接AH,此线段即为所求作线段;
理由如下:取格点W连接AW、CW,连接CR,∴,∴,
∵,∴, ∴,∴,
∵, ∴ ,∵点是的中点,∴点是的中点, 即,
∴垂直平分,∴.
连接,交AC于点,连接交于点,则该点就是点关于直线的对称点.
理由如下:∵垂直平分,
∴是等腰三角形,,∴ ,
∴,∴,∴,两点关于直线对称.
【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.
15.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
【答案】(1) (2)(3)仍然成立,理由见解析 (4)
【分析】(1)根据等腰直角三角形的性质,可得,根据题意可得,根据等原三角形的性质可得平分,即可得,根据旋转的性质可知;
(2)证明,可得,根据等腰直角三角形可得,由,即可即可得出;(3)同(2)可得,过点,作,交于点,证明,,可得,即可得出;
(4)过点作,交于点,证明,可得,,在中,勾股定理可得,即可得出.
(1)等腰直角三角形和等腰直角三角形,,
故答案为:
(2)
在与中,

重合,故答案为:
(3)同(2)可得,过点,作,交于点,
则,,
在与中,,,
,是等腰直角三角形,,,
,,
在与中,,,
,,即,
(4)过点作,交于点,
,,,,
,,,
,,,
,,,中,,
,即.
【点睛】本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的性质与判定,相似三角形的性质与判定,掌握全等三角形的性质与判定,相似三角形的性质与判定是解题的关键.
16.(2022·江苏连云港·中考真题)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.
【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.
(1)如图2,当点落在边上时,延长交于点,求的长.
(2)若点、、在同一条直线上,求点到直线的距离.(3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.
(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.
【答案】(1)(2)(3)(4)
【分析】(1)在Rt△BEF中,根据余弦的定义求解即可;(2)分点在上方和下方两种情况讨论求解即可;(3)取的中点,连接,从而求出OG=,得出点在以为圆心,为半径的圆上,然后根据弧长公式即可求解;(4)由(3)知,点在以为圆心,为半径的圆上,过O作OH⊥AB于H,当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,在Rt△BOH中求出OH,进而可求GH.
(1)解:由题意得,,
∵在中,,,.∴.
(2)①当点在上方时,如图一,过点作,垂足为,
∵在中,,,,
∴,∴.
∵在中,,,
,,∴.
∵点、、在同一直线上,且,∴.
又∵在中,,,,
∴,∴.
∵在中,,∴.
②当点在下方时,如图二,在中,∵,,,
∴.∴.
过点作,垂足为.在中,,
∴.综上,点到直线的距离为.
(3)解:如图三,取的中点,连接,则.
∴点在以为圆心,为半径的圆上.
当三角板绕点B顺时针由初始位置旋转到点、B、首次在同一条直线上时,点所经过的轨迹为所对的圆弧,圆弧长为.∴点所经过的路径长为.
(4)解:由(3)知,点在以为圆心,为半径的圆上,如图四,过O作OH⊥AB于H,
当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,
在Rt△BOH中,∠BHO=90°,∠OBH=30°,,∴,
∴,即点到直线的距离的最大值为.
【点睛】本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点在上方和下方是解第(2)的关键,确定点G的运动轨迹是解第(3)(4)的关键.
17.(2022·四川广元·中考真题)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为    ;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.
【答案】(1)135°(2)(2)①补全图形见解析;∠ADB=45°;②2BE-AD=CE.理由见解析
【分析】(1)由题意得点A、D、B都在以C为圆心,CA为半径的⊙C上,利用圆内接四边形的性质即可求解;(2)①根据题意补全图形即可;同(1),利用圆周角定理即可求解;
②过点C作CH⊥EC于点C,交ED的延长线于点H,证明BE=DE,△CEH是等腰直角三角形,推出EH=2BE-AD,利用等腰直角三角形的性质即可证明结论.
(1)解:由题意得:CA=CD=CB,
∴点A、D、B都在以C为圆心,CA为半径的⊙C上,如图,
在优弧上取点G,连接AG,BG,∵Rt△ABC中,∠BCA=90°,∴∠BGA=45°,
∵四边形ADBG是圆内接四边形,∴∠ADB=180°-45°=135°,故答案为:135°;
(2)①补全图形,如图:
由题意得:CA=CD=CB,∴点A、D、B都在以C为圆心,CA为半径的⊙C上,如图,
∵Rt△ABC中,∠BCA=90°,∴∠ADB=45°;
②2BE-AD=CE.理由如下:过点C作CH⊥EC于点C,交ED的延长线于点H,如图:
∵CD=CB,CE是∠BCD的平分线,∴CE是线段BD的垂直平分线,
∴BE=DE,∠EFD=90°,由①知∠ADB=45°,∴∠DEF=45°,
∴△CEH是等腰直角三角形, ∴∠DEF=∠H=45°,CE=CH,
∵CD=CA,∴∠CAD=∠CDA,则∠CAE=∠CDH,∴△AEC≌△DHC,
∴AE=DH,∴EH=2ED-AD=2BE-AD,∵△CEH是等腰直角三角形,∴2BE-AD=CE.
【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,圆内接四边形的性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形和等腰直角三角形解决问题.
18.(2022·新疆·中考真题)如图,在巾,,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将沿AD折叠得到,连接BE.
(1)当时,___________;(2)探究与之问的数量关系,并给出证明;
(3)设,的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.
【答案】(1)(2)(3)
【分析】(1)首先由折叠的性质可得,再由等腰三角形的性质可求解;
(2)首先由折叠的性质可得,,再由等腰三角形的性质可得,,最后根据角度关系即可求解;(3)首先由等腰直角三角形的性质和直角三角形的性质可求的长,由勾股定理可求的长,最后根据面积和差关系可求解.
(1),,,,
将沿折叠得到,,
,,故答案为:60;
(2),理由如下:
将沿折叠得到,,,
,,,,
,;
(3)如图,连接,,点是的中点,,
,,,,
,,,
,.
【点睛】本题考查了等腰直角三角形的性质,直角三角形的性质,折叠的性质等知识,解题的关键是熟练掌握相关性质并能够灵活运用.
19.(2022·湖北十堰·中考真题)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.
(1)如图1,当时,线段与的数量关系是_________;(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).
【答案】(1)BF=CF (2)成立;理由见解析 (3)或PD=0或
【分析】(1)连接AF,先根据“SAS”证明,得出,再证明,即可得出结论;(2)连接AF,先说明,然后根据“SAS”证明,得出,再证明,即可得出结论;(3)先根据,AB=AC,得出△ABC为等边三角形,再按照,,三种情况进行讨论,得出结果即可.
(1)解:BF=CF;理由如下:连接AF,如图所示:
根据旋转可知,,AE=AD,
∵∠BAC=90°,∴,,∴,
∵AC=AB,∴(SAS),∴,∴,
∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.故答案为:BF=CF.
(2)成立;理由如下:连接AF,如图所示:
根据旋转可知,,AE=AD,
∵,∴,,∴,
∵AC=AB,∴,∴,∴,
∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.
(3)∵,AB=AC,∴△ABC为等边三角形,
∴,,
当时,连接AF,如图所示:
根据解析(2)可知,,∴,
∵,,即,,
根据解析(2)可知,,∴,∴,
,,
∵,∴,∴,
,∴;
当时,AD与AC重合,如图所示:
∵,,∴△ADE为等边三角形,∴∠ADE=60°,
∵,∴,∴此时点P与点D重合,;
当时,连接AF,如图所示:
根据解析(2)可知,,∴,
∵,,
即,,
根据解析(2)可知,,∴,∴,
∵,,
∵,∴,∴,
,∴;
综上分析可知,或PD=0或.
20.(2022·河北·中考真题)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.
(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
【答案】(1)见详解(2)①;②;③
【分析】(1)先证明四边形是矩形,再根据算出CD长度,即可证明;
(2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可;
②运动分两个阶段:平移阶段:;旋转阶段:取刚开始旋转状态,以PM为直径作圆,H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T;设,利用算出,,,利用算出DG,利用算出GT,最后利用算出,发现,从而得到,度数,求出旋转角,最后用旋转角角度计算所用时间即可;
③分两种情况:当旋转角<30°时,DE在DH的左侧,当旋转角≥30°时,DE在DH上或右侧,证明,结合勾股定理,可得,即可得CF与d的关系.
(1)∵,∴
则在四边形中故四边形为矩形

在中,∴,
∵∴;
(2)①过点Q作于S
由(1)得: 在中,∴
平移扫过面积: 旋转扫过面积:
故边PQ扫过的面积:
②运动分两个阶段:平移和旋转 平移阶段:
旋转阶段:由线段长度得:
取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T 设,则
在中:
设,则,,
,,
∵DM为直径∴ 在中 :
在中: 在中:
∴, PQ转过的角度: s
总时间:
③设CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d, 当旋转角<30°时,DE在DH的左侧,如图:
∵∠EDF=30°,∠C=30°,∴∠EDF=∠C,
又∵∠DEF=∠CED,∴,∴,即,∴,
∵在中,,
∴,∴
当旋转角≥30°时,DE在DH上或右侧,如图:CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
同理:可得 综上所述:.
【点睛】本题考查动点问题,涉及到平移,旋转,矩形,解直角三角形,圆的性质,相似三角形的判定和性质;注意第(2)问第②小题以PM为直径作圆算出是难点,第(2)问第③小题用到相似三角形的判定和性质.
21.(2021·浙江绍兴市·中考真题)如图,矩形ABCD中,,点E是边AD的中点,点F是对角线BD上一动点,.连结EF,作点D关于直线EF的对称点P.
(1)若,求DF的长.(2)若,求DF的长.
(3)直线PE交BD于点Q,若是锐角三角形,求DF长的取值范围.
【答案】(1)3;(2)2或6;(3)或
【分析】(1)根据已知条件可求出,在Rt△EFD中即可求出DF(2)作点D关于直线EF的对称点P,P分两种情况当P在BD下方时根据等腰三角形的性质即可求出DF,P在BD上方时根据等腰三角形的性质即可求出DF;(3)作点D关于直线EF的对称点P,P分两种情况①P在BD下方时根据等腰三角形的性质可求出DF,当PE⊥BD时DF最小,当PE⊥AD时,DF最大,②P在BD上方时根据等腰三角形的性质可求出DF,当PE⊥BD时DF最小,当PE⊥AD时,DF最大,;
【详解】解:(1)如图1,矩形ABCD中,,
,,,点E是AD中点,,
,∴△EFD为直角三角形,∵,∴.
(2)第一种情况,如图2,,由对称性可得,EF平分,

∴是等腰三角形,过点F作FM⊥ED DM=EM= ,
∵在Rt△DMF中,,∴.
第二种情况,如图3,延长PE交BD于M∵∴∠EMD=90°
∵∴∴,
∵点D关于直线EF的对称点P∴FE垂直平分PD交PD于H
∴∠HED=60°,∠HDE=30°∴∠HDF=60°∴∠EFD=30°∴是等腰三角形,∴FE垂直平分DF
∵在Rt△DME中,,∴
∵.∴.综上:DF的长为2或6.
(3)∵是锐角三角形 ∴当PE⊥BD时DF最小,当PE⊥AD时,DF最大
由(2)可得当时,(如图2)或6(如图3).
当时,第①种情况,如图4,EF平分,,
过点F作于点M,设,则,,
,,,.
第②种情况,如图5,EF平分,,
过点F作于点M,设,则,,
,,,
,DF最大值为8,.综上:或.
【点睛】本题考查四边形综合题,考查了矩形的判定和性质,等腰三角形的判定和性质,解直角三角形,翻折对称等知识,解题的关键是学会用分类讨论的思想思考问题,画出几何示意图,学会利用参数解决问题,属于中考压轴题.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题19 图形的变换(轴对称、平移与旋转) 考场演练
【考场演练1】热点必刷
1.(2022·浙江嘉兴·中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
A.1cm B.2cm C.(-1)cm D.(2-1)cm
2.(2022·湖南郴州·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.(2022·江苏常州·中考真题)在平面直角坐标系中,点A与点关于轴对称,点A与点关于轴对称.已知点,则点的坐标是( )
A. B. C. D.
4.(2022·山东临沂·中考真题)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5.(2022·贵州遵义·中考真题)在平面直角坐标系中,点与点关于原点成中心对称,则的值为( )
A. B. C.1 D.3
6.(2022·山东泰安·中考真题)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A. B. C. D.
7.(2022·四川内江·中考真题)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
8.(2022·四川内江·中考真题)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是(  )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
9.(2022·广西贵港·中考真题)若点与点关于y轴对称,则的值是( )
A. B. C.1 D.2
10.(2022·北京·中考真题)图中的图形为轴对称图形,该图形的对称轴的条数为( )
A. B. C. D.
11.(2022·广西河池·中考真题)如图,在Rt△ABC中,,,,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
12.(2022·上海·中考真题)有一个正n边形旋转后与自身重合,则n为( )
A.6 B.9 C.12 D.15
13.(2022·广西贵港·中考真题)如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.
14.(2022·吉林·中考真题)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角后能够与它本身重合,则角可以为__________度.(写出一个即可)
15.(2022·吉林·中考真题)图①,图②均是的正方形网格,每个小正方形的顶点称为格点.其中点,,均在格点上.请在给定的网格中按要求画四边形.
(1)在图①中,找一格点,使以点,,,为顶点的四边形是轴对称图形;
(2)在图②中,找一格点,使以点,,,为顶点的四边形是中心对称图形.
16.(2022·江苏常州·中考真题)如图,点在射线上,.如果绕点按逆时针方向旋转到,那么点的位置可以用表示.
(1)按上述表示方法,若,,则点的位置可以表示为______;
(2)在(1)的条件下,已知点的位置用表示,连接、.求证:.
17.(2022·湖北武汉·中考真题)已知四边形为矩形.点E是边的中点.请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.
(1)在图1中作出矩形的对称轴m,使;
(2)在图2中作出矩形的对称轴n:使.
18.(2022·湖北荆州·中考真题)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.
(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.
19.(2022·黑龙江哈尔滨·中考真题)如图,方格纸中每个小正方形的边长均为1,的顶点和线段的端点均在小正方形的顶点上.
(1)在方格纸中面出,使与关于直线对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段为一边的平行四边形(点G,点H均在小正方形的顶点上),且平行四边形的面积为4.连接,请直接写出线段的长.
20.(2022·四川广安·中考真题)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)
21.(2022·浙江温州·中考真题)如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形.
22.(2022·浙江丽水·中考真题)如图,在的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.
(1)如图1,作一条线段,使它是向右平移一格后的图形;
(2)如图2,作一个轴对称图形,使和是它的两条边;
(3)如图3,作一个与相似的三角形,相似比不等于1.
23.(2022·浙江绍兴·中考真题)如图,在△ABC中,∠ABC=40°, ∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.
(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.
【考场演练2】重难点必刷
1.(2022·贵州毕节)矩形纸片中,E为的中点,连接,将沿折叠得到,连接.若,,则的长是( )
A.3 B. C. D.
2.(2022·湖南·中考真题)如图,点是等边三角形内一点,,,,则与的面积之和为( )
A. B. C. D.
3.(2022·广西·中考真题)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
4.(2022·内蒙古包头·中考真题)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( )
A. B. C.3 D.2
5.(2022·四川宜宾·中考真题)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是( )
A.①②④ B.①②③ C.①③④ D.①②③④
6.(2022·浙江台州·中考真题)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为________;当点M的位置变化时,DF长的最大值为________.
7.(2022·河南·中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点处,得到扇形.若∠O=90°,OA=2,则阴影部分的面积为______.
8.(2022·河南·中考真题)如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
9.(2022·广西贺州·中考真题)如图,在平面直角坐标系中,为等腰三角形,,点B到x轴的距离为4,若将绕点O逆时针旋转,得到,则点的坐标为__________.
10.(2022·山东潍坊·中考真题)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为___________.
11.(2022·山东潍坊·中考真题)如图,在直角坐标系中,边长为2个单位长度的正方形绕原点O逆时针旋转,再沿y轴方向向上平移1个单位长度,则点的坐标为___________.
12.(2022·四川德阳·中考真题)如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
13.(2022·浙江丽水·中考真题)一副三角板按图1放置,O是边的中点,.如图2,将绕点O顺时针旋转,与相交于点G,则的长是___________.
14.(2022·湖北武汉·中考真题)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
(1)在图(1)中,,分别是边,与网格线的交点.先将点绕点旋转得到点,画出点,再在上画点,使;(2)在图(2)中,是边上一点,.先将绕点逆时针旋转,得到线段,画出线段,再画点,使,两点关于直线对称.
15.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
16.(2022·江苏连云港·中考真题)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.
【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.
(1)如图2,当点落在边上时,延长交于点,求的长.
(2)若点、、在同一条直线上,求点到直线的距离.(3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.
17.(2022·四川广元·中考真题)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.
(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为    ;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.
18.(2022·新疆·中考真题)如图,在巾,,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将沿AD折叠得到,连接BE.
(1)当时,___________;(2)探究与之问的数量关系,并给出证明;
(3)设,的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.
19.(2022·湖北十堰·中考真题)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.
(1)如图1,当时,线段与的数量关系是_________;(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).
20.(2022·河北·中考真题)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.
(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
21.(2021·浙江绍兴市·中考真题)如图,矩形ABCD中,,点E是边AD的中点,点F是对角线BD上一动点,.连结EF,作点D关于直线EF的对称点P.
(1)若,求DF的长.(2)若,求DF的长.
(3)直线PE交BD于点Q,若是锐角三角形,求DF长的取值范围.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录