北师大版数学七年级下册
《探索三角形全等的条件》专项练习
一 、选择题
1.下列叙述中错误的是( )
A.能够重合的图形称为全等图形
B.全等图形的形状和大小都相同
C.所有正方形都是全等图形
D.形状和大小都相同的两个图形是全等图形
2.下列四个图形中用两条线段不能分成四个全等图形的是( )
A. B. C. D.
3.如图,点E,F在线段BC上,△ABF≌△DCE,AF与DE交于点M.若∠DEC=36°,则∠AME=( )
A.54° B.60° C.72° D.75°
4.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )
A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/
B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/
C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/
D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/
5.如图,用尺规作图“过点 C 作 CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是( )
A.SAS B.SSS C.ASA D.AAS
6.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )
A.带①去 B.带②去 C.带③去 D.带①②③去
7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( )
A.SAS B.ASA C.SSS D.HL
8.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18 cm2,则EF边上的高的长是( ).
A.3cm B.4cm C.5cm D.6cm
9.下图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.△ACF B.△ADE C.△ABC D.△BCF
10.阅读下面材料:在数学课上,老师提出如下问题:
尺规作图1,作一个角等于已知角.
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AO
小明同学作法如下,如图2:
①作射线O′A′;
②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;
③以点O′为圆心,以OC长为半径作弧,交O′A′于C′;
④以点C′为圆心,以CD为半径作弧,交③中所画弧于D′;
⑤过点D′作射线O′B′,则∠A′O′B′就是所求的角.
老师肯定小明的作法正确,则小明作图的依据是( )
A.两直线平行,同位角相等
B.两平行线间的距离相等
C.全等三角形的对应角相等
D.两边和夹角对应相等的两个三角形全等
11.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
下面四个结论:①∠ABE =∠BAD;②△CBE≌△ACD;③AB=CE;④AD-BE=DE.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
12.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.
以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
二 、填空题
13.如图,△ABC≌△ADE,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC= ,∠D= ,∠DAC= .
14.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A= .
15.如图,已知AB∥CD,AE=CF,则下列条件:①AB=CD;②BE∥DF;③∠B=∠D;④BE=DF.其中不一定能使△ABE≌△CDF的是 (填序号)
16.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为 E,D,AD=25,DE=17,则 BE= .
17.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O.
下列结论中:
①∠ABC=∠ADC;
②AC与BD互相平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=AC·BD.
正确的是________.(填写所有正确结论的序号)
18.如图所示,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别为点R,S,若AQ=PQ,PR=PS,QD⊥AP.
现有下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.
其中正确的是 (把所有正确结论的序号都选上)
三 、解答题
19.如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.
(1)求证:△ABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度数.
20.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
21.某风景区改建中,需测量湖两岸游船码头A、B间的距离,于是工作人员在岸边A、B的垂线AF上取两点E、D,使ED=AE.再过D点作出AF的垂线OD,并在OD上找一点C,使B、E、C在同一直线上,这时测得CD长就是AB的距离.请说明理由.
22.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足.
求证:①AC=AD; ②CF=DF.
23.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图①,求证:AE=BD;
(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.
24.如图,已知△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只写出结论,不用写理由.
25.(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
答案
1.C
2.D
3.C.
4.B
5.B.
6.C
7.B
8.D
9.B.
10.C.
11.C.
12.D
13.答案为:185°,40°,90°;
14.答案为:30°.
15.答案为:④.
16.答案为:8.
17.答案为:①④.
18.答案为:①②④.
19.(1)证明:∵AC=AD+DC, DF=DC+CF,
且AD=CF,
∴AC=DF.
在△ABC和△DEF中,
∵
∴△ABC≌△DEF(SSS);
(2)解:由(1)可知,∠F=∠ACB.
∵∠A=55°,∠B=88°,
∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,
∴∠F=∠ACB=37°.
20.解:(1)∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∠AOD=∠BOE,
∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA);
(2)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,
∵EC=ED,∠1=42°,
∴∠C=∠EDC=69°,
∴∠BDE=∠C=69°.
21.证明:∵AB⊥AD,CD⊥AD
∴∠A=∠CDE=90°
又∵ED=AE,∠AEB=∠CED
∴△ABE≌△CED(AAS)
所以AB=CD.
22.证明:①∵AB=AE,BC=ED,∠B=∠E,
∴△ABC≌△AED(SAS),
∴AC=AD,
②∵△ABC≌△AED
AC=AD
∵AF⊥CD,
∴∠AFC=∠AFD=90°
∵AF=AF
∴△AFC≌△AFD(SAS)
∴CF=FD.
23.解:(1)∵△ACB和△DCE都是等腰直角三角形,
∠ACB=∠DCE=90°,
∴AC=BC,DC=EC,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
在△ACE与△BCD中,
∴△ACE≌△BCD(SAS),
∴AE=BD;
(2)∵AC=DC,
∴AC=CD=EC=CB,
△ACB≌△DCE(SAS);
由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,
∵∠AEC=∠BDC,∠EMC=∠DMO,
∴∠DOM=90°.
∵∠AEC=∠CAE=∠CBD,
∴△ECM≌△BCN(ASA),
∴CM=CN,
∴DM=AN,
△AON≌△DOM(AAS),
∵DE=AB,AO=DO,
∴Rt△AOB≌Rt△DOE(HL).
24.证明:(1)∵△ABC和△DBE均为等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=∠CBE,
∴△ABD≌△CBE,
∴AD=CE
(2)垂直.理由:延长AD分别交BC和CE于G和F.
∵△ABD≌△CBE,
∴∠BAD=∠BCE.
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∴∠AFC=∠ABC=90°,
∴AD⊥CE
25.(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:
∵AD是BC边上的中线,
∴BD=CD,
在△BDE和△CDA中,
,
∴△BDE≌△CDA(SAS),
∴BE=AC=6,
在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
∴10﹣6<AE<10+6,即4<AE<16,
∴2<AD<8;
故答案为:2<AD<8;
(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:
同(1)得:△BMD≌△CFD(SAS),
∴BM=CF,
∵DE⊥DF,DM=DF,
∴EM=EF,
在△BME中,由三角形的三边关系得:BE+BM>EM,
∴BE+CF>EF;
(3)解:BE+DF=EF;理由如下:
延长AB至点N,使BN=DF,连接CN,如图3所示:
∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
∴∠NBC=∠D,
在△NBC和△FDC中,
,
∴△NBC≌△FDC(SAS),
∴CN=CF,∠NCB=∠FCD,
∵∠BCD=140°,∠ECF=70°,
∴∠BCE+∠FCD=70°,
∴∠ECN=70°=∠ECF,
在△NCE和△FCE中,
,
∴△NCE≌△FCE(SAS),
∴EN=EF,
∵BE+BN=EN,
∴BE+DF=EF.