26.2 二次函数的图象与性质(3)
[本课知识要点]
会画出这类函数的图象,通过比较,了解这类函数的性质.
[MM及创新思维]
我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?
[实践与探索]
例1.在同一直角坐标系中,画出下列函数的图象.
, ,,并指出它们的开口方向、对称轴和顶点坐标.
解 列表.
x … -3 -2 -1 0 1 2 3 …
… 2 0 2 …
… 0 2 8 …
… 8 2 0 …
描点、连线,画出这三个函数的图象,如图26.2.5所示.
它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是
(0,0),(-2,0),(2,0).
回顾与反思 对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最 值,最 值y= .
探索 抛物线和抛物线分别是由抛物线向左、向右平移两个单位得到的.如果要得到抛物线,应将抛物线作怎样的平移?
例2.不画出图象,你能说明抛物线与之间的关系吗
解 抛物线的顶点坐标为(0,0);抛物线的顶点坐标为(-2,0).
因此,抛物线与形状相同,开口方向都向下,对称轴分别是y轴和直线.抛物线是由向左平移2个单位而得的.
回顾与反思 (a、h是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:
开口方向 对称轴 顶点坐标
[当堂课内练习]
1.画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的.
2.在同一直角坐标系中,画出下列函数的图象.
, ,,并指出它们的开口方向、对称轴和顶点坐标.
[本课课外作业]
A组
1.已知函数,, .
(1)在同一直角坐标系中画出它们的图象;
(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;
(3)分别讨论各个函数的性质.
2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线得到抛物线和?
3.函数,当x 时,函数值y随x的增大而减小.当x 时,函数取得最 值,最 值y= .
4.不画出图象,请你说明抛物线与之间的关系.
B组
5.将抛物线向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点
(1,3),求的值.