中小学教育资源及组卷应用平台
北师大版小学数学
六年级下册总复习《数与代数》——解方程或比例
1.解方程。
2.求未知数x。
3.求未知数x。
4.解方程。
5.解方程。
x+25%x=
6.解方程。
7.解方程。
x÷=36 x-x= x÷=15×
8.求未知数x。
x-20%x=15
9.解方程。
10.解方程。
11.解方程。
12.解方程。
13.解方程。
5x-4.6=7
14.解方程。
15.解方程。
16.解方程。
17.解方程。
x÷= x+x=28 50%x-=
18.解方程。
19.解方程或比例。
x+62.5%x=2.6 2y-3.5×4=16.8 ∶35=∶x
20.解方程。
(1) (2) (3)
21.解方程。
12.5%x+10=18 x=13
22.解方程。
= =28 -=
23.解方程。
24.解方程。
25.解方程。
(1)1-x= (2)3x-20%x= (3)x÷=
26.解方程。
x=2 x-40%x=12
27.解方程。
(1)x÷=4.5 (2)x-x= (3)80%x+=
28.解方程。
15x-30=120 25%x=50 x-33%x=6.8
29.解方程。
= = x+15%x=115
参考答案:
1.;;
【分析】(1)先把15%化成0.15,然后方程两边先同时加上30,再同时除以0.15,求出方程的解;
(2)先计算方程左边,把方程化简成0.2=28,方程两边同时除以0.2,求出方程的解;
(3)先计算方程左边,把方程化简成=240,方程两边同时除以,求出方程的解。
【详解】(1)
解:
(2)
解:
(3)
解:
2.;;
【分析】(1)根据等式的性质,在方程两边同时除以即可;
(2)先计算方程的左边,把原方程化为,再根据等式的性质,在方程两边同时除以即可;
(3)先化简方程的左边,把原方程化为,再根据等式的性质,在方程两边同时减去12,再在方程两边同时除以即可。
【详解】
解:
解:
解:
3.x=8;x=90;x=
【分析】(1)先计算出方程左边x-35%x=65%x,再根据等式的性质,方程两边都除以65%即可得到原方程的解;
(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程2x=12×1.5,再根据等式的性质,方程两边都除以2即可得到原比例的解;
(3)先计算出方程左边,再根据等式的性质,方程两边都除以即可得到原方程的解。
【详解】(1)
解:65%x=5.2
65%x÷65%=5.2÷65%
x=5.2÷0.65
x=8
(2)
解:2x=12×15
2x÷2=180÷2
x=90
(3)
解:=1.4
÷=1.4÷
x=÷
x=×
x=
4.;;
【分析】根据等式的性质解方程。
(1)方程两边同时除以,求出方程的解;
(2)方程两边先同时减去,再同时除以,求出方程的解;
(3)先分别计算方程左边、右边,把方程化简成,然后方程两边同时除以,求出方程的解。
【详解】(1)
解:
(2)
解:
(3)
解:
5.x=;x=;x=2
【分析】(1)先把方程左边化简为1.25x,两边再同时除以1.25;
(2)根据等式的性质,方程两边同时减去即可;
(3)根据等式的性质,两边同除以即可。
【详解】(1)x+25%x=
解:1.25x=
1.25x÷1.25=÷1.25
x=×
x=
x=
(2)
解:+x-=-
x=-
x=-
x=
(3)
解:x÷=÷
x=×
x=
x=
6.;;
【分析】(1)利用等式的性质1分别在等式的左右两边加上,再利用等式的性质2在等式的左右两边同时除以即可求解。
(2)利用等式的性质2先在等式的左右两边同时乘上,再同时除以4即可求解。
(3)利用比和除法之间的关系,先将比变成除法,再依据等式的性质2在等式的左右两边同时乘即可求解。
【详解】(1)
解:
(2)
解:
(3)
解:
7.x=16;x=;x=
【分析】x÷=36,根据等式的性质2,方程两边同时乘即可;
x-x=,先化简方程左边含义x的算式,即求出1-的差,再根据等式的性质2,方程两边同时除以1-的差即可;
x÷=15×,先计算出方程右边15×的积,再根据等式的性质2,方程两边同时乘即可。
【详解】x÷=36
解:x=36×
x=16
x-x=
解:x=
x=÷
x=×
x=
x÷=15×
解:x÷=10
x=10×
x=
8.x=;x=6;x=18.75
【分析】先化简,然后根据等式的性质,方程两边同时除以求解;
根据等式的性质,方程两边同时加上x,然后再同时减去,最后再同时除以求解;
x-20%x=15先化简,然后再根据等式的性质,方程两边同时除以0.8求解。
【详解】
解:
x=
x÷=÷
x=
x=
解:3-x+x=+x
+x=3
-+x=3-
x=2
x÷=÷
x=
x=6
x-20%x=15
解:0.8x=15
0.8x÷0.8=15÷0.8
x=18.75
9.;;
【分析】,先把左边合并为,然后根据等式的性质2,将方程左右两边同时除以即可;
,根据等式的性质2,将方程左右两边同时乘,再同时除以即可;
,根据等式的性质1,将方程左右两边同时加上,然后将百分数化为分数,再根据等式的性质2,将方程左右两边同时除以即可。
【详解】
解:
解:
解:
10.;;
【分析】根据等式的性质1,方程的两边同时减去即可;
根据等式的性质2,方程的两边同时乘6,再同时除以2.5即可;
化简方程为:0.8x=48,再根据等式的性质2,方程的两边同时除以0.8即可。
【详解】
解:
解:
解:
11.;;
【分析】(1)根据等式的性质,在方程两边同时除以即可;
(2)根据等式的性质,在方程两边同时加上,再在方程两边同时除以即可;
(3)先化简方程的左边,把原方程化为1.8x=36,再根据等式的性质,在方程两边同时除以1.8即可。
【详解】
解:
解:
解:
12.;;
【分析】,将等号右边计算出结果,根据等式的性质2,两边同时×即可;
,根据等式的性质1和2,两边同时+1,再同时×即可;
,先将左边进行合并,再根据等式的性质2解方程。
【详解】
解:
解:
解:
13.;;
【分析】(1)根据等式的性质5x-4.6=7将方程两边用时加4.6,再同时除以5,即可求解;
(2)先化简方程左边得1.2x,然后根据等式的性质方程两边同时除以1.2,即可求解。
(3)先化简方程左边得1.6x,然后根据等式的性质方程两边同时除以1.6,即可求解。
【详解】(1)
解:5x-4.6+4.6=7+4.6
5x=11.6
5x÷5=11.6÷5
x=2.32
(2)
解:x=4.8
1.2x=4..8
1.2x÷1.2=4..8÷1.2
x=4
(3)
解:2x-0.4x=7.2
1.6x=7.2
1.6x÷1.6=7.2÷1.6
x=4.5
14.;;
【分析】第一小题,先化简方程为:,再把方程的两边同时除以0.5,求出方程的解;
第二小题,先化简方程为:,再把方程的两边同时乘,求出方程的解;
第三小题,根据等式的性质,方程的两边先同时减去,再同时乘,解方程即可。
【详解】
解:
解:
解:
15.;;
【分析】根据等式的性质解方程。
(1)方程两边同时乘,求出方程的解;
(2)先将比例方程改写成,然后方程两边同时除以14,求出方程的解;
(3)先计算方程左边的,把方程化简成,然后方程两边同时除以,求出方程的解。
【详解】(1)
解:
(2)
解:
(3)
解:
16.;;
【分析】根据等式的性质2,方程的两边同时乘即可;
根据等式的性质1,方程的两边同时减去,再根据等式的性质2,方程的两边同时乘即可;
化简方程为1.4x=42,再根据等式的性质2,方程的两边同时除以1.4即可。
【详解】
解:
解:
解:
17.x=;x=16;x=
【分析】x÷=,根据等式的性质2,两边同时×即可;
x+x=28,先将左边进行合并,再根据等式的性质2解方程;
50%x-=,根据等式的性质1和2,两边同时+,再同时×2即可。
【详解】x÷=
解:x÷×=×
x=
x+x=28
解:x=28
x×=28×
x=16
50%x-=
解:x-+=+
x=
x×2=×2
x=
18.;;
【分析】(1)先化简方程的左边,把原方程化为,再根据等式的性质,在方程两边同时加上x,再在方程两边同时减去即可;
(2)根据等式的性质,在方程两边同时减去5,再在方程两边同时除以即可;
(3)先化简方程的左边,把原方程化为,再在方程两边同时除以0.85即可。
【详解】
解:
解:
解:
19.x=1.6;y=15.4;x=100
【分析】①先计算x+62.5%x=1.625x,根据等式的性质,方程的两边同时除以1.625求解;
②先计算3.5×4=14,根据等式的性质,方程的两边同时加上14,然后方程的两边同时除以2求解;
③根据比例的基本性质,把原式化为x=35×,然后方程的两边同时除以求解。
【详解】①x+62.5%x=2.6
解:1.625x=2.6
1.625x÷1.625=2.6÷1.625
x=1.6
②2y-3.5×4=16.8
解:2y-14=16.8
2y-14+14=16.8+14
2y=30.8
2y÷2=30.8÷2
y=15.4
③∶35=∶x
解:x=35×
x÷=35×÷
x=100
20.(1);(2)x=48;(3)x=1
【分析】(1)先化简方程,再根据等式的性质,方程两边同时除以即可;
(2)根据等式的性质,方程两边同时加上8,再同时除以即可;
(3)根据等式的性质,方程两边同时乘,再同时除以2即可。
【详解】(1)
解:
(2)
解:
(3)
解:
21.x=64;x=21;x=
【分析】根据等式的性质,方程两边同时减去10,然后再同时除以12.5%求解;
先化简x+x=x,然后再根据等式的性质,方程两边同时除以求解;
根据等式的性质,方程两边同时加上,然后再同时除以求解。
【详解】12.5%x+10=18
解:12.5%x+10-10=18-10
12.5%x=8
12.5%x÷12.5%=8÷12.5%
x=64
x=13
解:x+x=13
x=13
x=13×
x=21
解:
x=
22.x=2;x=30;x=7
【分析】(1)根据等式的性质,在方程两边同时乘,再在方程两边同时除以即可;
(2)先计算方程的左边,把原方程化为=28,再根据等式的性质,在方程的两边同时除以即可;
(3)先计算方程的左边,把原方程化为x=,再根据等式的性质,在方程的两边同时除以即可。
【详解】=
解:×=×
=1
÷=1÷
=1×2
=2
=28
解:=28
÷=28÷
x=28×
x=30
-=
解:x=
x÷=÷
x=×
x=7
23.;;
【分析】(1)根据等式的性质,在方程两边同时乘2,再在方程两边同时除以即可;
(2)先计算方程的左边,把原方程化为,再根据等式的性质,在方程两边同时除以即可;
(3)先计算方程的左边,把原方程化为,再根据等式的性质,在方程两边同时除以1.6即可。
【详解】
解:
解:
解:
24.x=;x=10;x=3
【分析】(1)首先根据等式的性质1,两边同时减去,然后再依据等式的性质2两边再同时除以即可;
(2)首先化简,然后根据等式的性质2,两边同时除以即可;
(3)首先化简,然后根据等式的性质,两边同时除以即可。
【详解】(1)x+=
解:x+-=-
x=
x÷=÷
x=
(2)
解:x=15
x÷=15÷
x=10
(3)
解:x=
x÷= ÷
x=3
25.(1)x=;(2)x=1.25;(3)x=
【分析】(1)根据等式的性质,方程两边同时加x,再同时减,最后同时除以即可得到原方程的解。
(2)先计算出方程左边3x-20%x=2.8x,再根据等式的性质,方程两边同时除以2.8即可得到原方程的解。
(3)先计算出方程左边x÷=x,再根据等式的性质,方程两边同时除以即可得到原方程的解。
【详解】(1)1-x=
解:1-x+x=+x
1=+x
+x-=1-
x=
x÷=÷
x×4=×4
x=
(2)3x-20%x=
解:2.8x=
2.8x÷2.8=3.5÷2.8
x=1.25
(3)x÷=
解:x=
x÷=÷
x×=×
x=
26.x=;x=20;x=
【分析】(1)根据等式的性质,两边同时除以即可;
(2)首先化简,然后根据等式的性质,两边同时除以0.6即可;
(3)首先根据等式的性质,两边同时乘,然后两边再同时除以即可。
【详解】(1)x=2
解:x÷=2÷
x×=2×
x=
(2)x-40%x=12
解: x-0.6x=12
0.6x=12
0.6x÷0.6=12÷0.6
x=20
(3)
解:
27.(1)x=2.5;(2)x=9;(3)x=0.625
【分析】(1)根据等式的性质,方程两边同时乘即可解答;
(2)先化简方程,再根据等式的性质,方程两边同时除以即可解答;
(3)根据等式的性质,方程两边同时减去,再同时除以0.8即可解答。
【详解】(1)x÷=4.5
解:x÷×=4.5×
x=2.5
(2)x-x=
解:x=
x÷=÷
x×4=×4
x=9
(3)80%x+=
解:80%x+-=-
0.8x=
0.8x÷0.8=÷0.8
x=0.625
28.x=10;x=200;x=40
【分析】(1)根据等式的性质,两边同时加上30,然后两边同时除以15即可;
(2)根据等式的性质,两边同时除以0.25即可;
(3)首先化简,然后根据等式的性质,两边同时除以0.17即可。
【详解】(1)15x-30=120
解:15x-30+30=120+30
15x=150
15x÷15=150÷15
x=10
(2)25%x=50
解:0.25x=5
0.25x÷0.25=5÷0.25
x=200
(3)x-33%x=6.8
解:0.5x-0.33x=6.8
0.17x=6.8
0.17x÷0.17=6.8÷0.17
x=40
29.x=;x=;x=100
【分析】(1)方程左右两边同时除以,求出方程的解;
(2)方程左右两边同时减去,再把方程两边同时除以,求出方程的解;
(3)利用乘法分配律进行字母式的化简,再把分方程两边同时除以1.15,求出方程的解。
【详解】
解:
解:
解:
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)