17.1 勾股定理
(同步练习)
一、单选题
1.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a,b,斜边为c)与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则的值为( )
A.68 B.89 C.119 D.130
3.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)
A.30 B.28 C.25 D.22
4.如图,长方形中,,,将此长方形折叠,使点D与点B重合,折痕为.则的长为( )
A.13 B.12 C.10 D.8
5.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是( )
A.148 B.100 C.196 D.144
6.观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,,根据图中图形面积之间的关系及勾股定理,可直接得到等式( )
A. B.
C. D.
7.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )
A.1.0 米 B.1.2 米 C.1.25 米 D.1.5 米
8.如图,在边长为1的正方形网格中,A、B、C均在正方形格点上,则C点到AB的距离为( )
A. B. C. D.
9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则的值为( )
A.13 B.12 C.11 D.10
10.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
二、填空题
11.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
12.如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.
13.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形,对角线,交于点O,若,,则______.
14.如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s
15.风景秀丽的永嘉境内分布着许多国家级旅游景点,北斗卫星拍摄到永嘉小若岩风景区与埭头古村以及两条相互垂直的乡间公路的位置如图所示,A点的坐标为,B点的坐标为.现要在两条乡间公路上各建一个便民服务点C,D,形成一条便民服务通道.试求四边形ABCD的最小周长______.
三、解答题
16.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.
(1)求风筝的垂直高度CE;
(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?
17.如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?
18.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?
19.如图所示,在甲村至乙村的公路旁有一块山地正在开发,现需要在处进行爆破,已知点与公路上的停靠站的距离为300米,与公路上的另一停靠站的距离为400米,且.为了安全起见,爆破点周围半径250米范围内不得进入,在进行爆破时,公路是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.
20.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到(即),消防车高,救人时云梯伸长至最长,在完成从(即)高的处救人后,还要从(即)高的处救人,这时消防车从处向着火的楼房靠近的距离为多少米?(延长交于点,,点在上,的长即为消防车的高)
21.细心观察下图,认真分析各式,然后解答问题.
,;
,;
,…
(1)直接写出:______.
(2)请用含有(是正整数)的等式表示上述变化规律:______=______,______;
(3)求出的值.
参考答案:
1.A2.B3.C4.A5.A6.C7.A8.D9.A10.A
11.14.5
12.7
13.13
14.8
15.5+
16.(1)风筝的高度CE为21.6米;
(2)他应该往回收线8米.
17.这棵树在离地面6米处被折断
18.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.
19.公路有危险需要封锁,需要封锁的路段长度为140米
20.消防车从原处向着火的楼房靠近的距离为
21.(1)
(2)
(3)