辽宁省沈阳市级重点高中联合体2022-2023学年高二下学期5月期中检测数学试题(扫描版含解析)

文档属性

名称 辽宁省沈阳市级重点高中联合体2022-2023学年高二下学期5月期中检测数学试题(扫描版含解析)
格式 zip
文件大小 2.0MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-05-05 05:41:56

文档简介

2022—2023 学年度(下)联合体高二期中检测
数学 参考答案及评分标准
一、单选题(本大题共 8 小题,每小题 5 分,共 40 分)
1
1.D 【解析】因为 (3, 2),所以 ( < 2) = ( > 4) = ,所以 ( < 4) =
5
4
1 ( > 4) = .故选:D.
5
2.B 【解析】在等比数列{ }中,由 a2=8,根据等比中项可得 =
2
1 3 2 =64,
所以log 1 + log
2
2 2 3
=log 2 = log 64 = 6.故选:B. 2 2
3.A 【解析】由题意知随机变量 服从超几何分布.因为 表示这 6 本书中理科书籍
C6C0 C5C14
的本数,所以 8 4 + 8 = (6 6 = 0) + ( = 1) = ( ≤ 1).故选:A. C12 C12
4.A 【解析】设公差为 ,则 2 + 3 = 2 1 + 3 = 8,解得 = 4,所以数列{ }的
通项公式是 = 2 + 4( 1) = 4 6.故选:A.
1 3
5.C 【解析】由 ( ) = ,得 ( ) = 1 ( ) = .因为 ( ) = ( ) ( | ) =
4 4
3 1
( ) ( | ) × 1
( ) ( | ),所以 ( | ) = = 4 3 = .故选:C.
( ) 1 2
2
3 = 16,
2
1 = 16,
6.A 【解析】设 1 = 1 .由题意得{ 即{
2 + 4 = 2 × 20, 1 +
3
1 = 40,
1 = 4,
解得{
1 4×(1 2 )
( = 舍去),所以该数列的前 n 项和为 = 2 +2 4.故选:A.
= 2, 2 1 2
1 2
7.D 【解析】由题意,得 + + + = 1,所以 + + = ①.
3 3
1 3 1
因为 ( ) = ( 1) × + 0 × + 1 × + 2 × = ,所以 + = ②.
3 4 12
1 7 1 1 1
由 ( ≥ 1) = + = ,得 = ,依次代入②、①,解得 = , = ,
3 12 4 6 4
3 2 1 3 2 1 3 2 1 3 2 1 19
所以 ( ) = ( 1 ) × + (0 ) × + (1 ) × + (2 ) × = .故选:D.
4 6 4 4 4 4 4 3 16
8.C 【解析】不妨设 1 = 1 = 1 = 1 = 1,则 1 = 0.114, 1 = 1,
+ + + 0.114+
= , = .由题意,知 1 1 1 1 = 0.414,即 1
+ 2+ 3
1 2 1 3 = 0.414.设 1+ 1+ 1+ 1 4
该数列的公差为 .因为 1 = 0.114 + , 2 = 0.114 + 2 , 3 = 0.114 + 3 ,所以
0.114×4+6
= 0.414,解得 = 0.2.故选:C.
4
二、多选题(本大题共 4 小题,每小题 5 分,共 20 分)
1 + = 0, 1 = 1,
9.ABD 【解析】由题意,得{ 7×6 解得{ 故 A 正确;
7 1 + = 1 + 3 + 12, = 1,2
所以 = 1 + ( 1) × 1 = 2,故 B 正确;
所以 4 + 10 = 2 1 + 12 = 2 + 12 = 10,故 C 错误;
( 1) 2 3 1 3 2 9
所以 = ( 1) × + × 1 = = ( ) .因为 ∈
,所以当 = 1或
2 2 2 2 8
=2 时, 取得最小值,故 D 正确.故选:ABD.
第 1 页 共 5 页
12
10.BC 【解析】因为 ( ) = ,所以 (5 + 2) = 25 ( ) = 12,故 A 错误;
25
由 = 0.3 0.7 ,得样本点(2, 3)的残差为 3 (0.3 0.7 × 2) = 1.9,故 B 正确;
由 ( ) = 0.3,得 ( ) = 0.7,所以 ( | ) = ( ),即事件 A 与 B 独立,故 C 正确;
根据 2 = 3.712 < 3.841,故没有 95%的把握认为 X 与 Y 有关,故 D 错误.故选:BC.
11.ABD 【解析】由 1=1, +1 = 2
,得 1 2 = 2,则 2 = 2,所以 2 3 = 4,
所以 3 = 2,故 A 正确;
2 +1
由 +1 = 2 ,得 +1 = 2
+1,所以 +1 +2 +2 +2 = = 2,即 = 2,所以数列{ } +1 2
的奇数项和偶数项,均是以 2 为公比的等比数列, 1 2 = 2 × 2 = 2 , 2 1 = 1 ×
2 1 = 2 1,故 B 正确;
1 2 1 + 2 = 2 + 2 = 3 × 2
1, 1 12 2 1 = 2 2 = 2 ,故 C 错误,D
正确.故选:ABD.
12.AD 【解析】设事件 =“向右下落”,则 =“向左下落”,且 ( ) = ( ) =
1
.因为小球最后落入格子的号码 等于事件 发生的次数,而小球下落的过程中共碰撞
2
1 1 1 1
9 5
小木钉 10 次,所以 (10, ),所以 ( = 1) = C10 × ( ) = , ( = 9) =2 2 2 512
9 1
9 1 5 1 1 5
C10 ( ) × = ,故 A 正确,B 错误;所以 ( ) = 10 × × (1 ) = ,故 C 错误,2 2 512 2 2 2
D 正确.故选:AD.
三、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
13.1 【解析】当散点图的所有点都在一条斜率为非 0 实数的直线上时,它的残差为
0,残差的平方和为 0,所以它的相关系数为 1.故答案为:1.
3[1 ( 2) ]
14.4 【解析】由题意,得 = = 15,解得 = 4.故答案为:4. 1 ( 2)
7 1 1 1 1 1 1
15. 【解析】设 = { },则 = = , = = .又因为数列{ }为5 +1 3 3+1 3 7 7+1 2 +1
1 1 5 1 5 7 7
等差数列,所以2 5 = 3 + 7 = + = ,即 5 = = ,解得 = .故答案为:. 3 2 6 5+1 12 5 5 5
16.0.13 0.46 【解析】设事件 A 为购买的零件是甲厂产品,事件 B 为购买的
零件是乙厂产品,事件C为购买的零件是次品,则 ( ) = 0.7, ( ) = 0.3, ( | ) = 0.1,
( | ) = 0.2,所以 ( ) = ( ) ( | ) + ( ) ( | ) = 0.7 × 0.1 + 0.3 × 0.2 = 0.13.
( ) 0.06
因为 ( ) = 0.3 × 0.2 = 0.06,所以 ( | ) = = ≈ 0.46.故答案为:0.13;0.46.
( ) 0.13
四、解答题(本大题共 6 小题,共 70 分)
规范解答 评分细则
17.(1)证明:因为 +1 +1 = 2 + 2 ,
所以 2 = 2 +1 +1 , ····················································2 分

所以 +1 = 1, ···························································4 分
2 +1 2
未求出 1扣 1 分;
即 +1 = 1. ·····························································5 分
未说明首项、公差扣 1
又因为 11 = = 2, ·························································6 分 2
分;
所以数列{ }是首项为 2、公差为 1 的等差数列.·························7 分
第 2 页 共 5 页
(2)解:由(1)知 = 2 + ( 1) × 1 = + 1, ·····················8 分 直接给出 = +1
1 1 1
所以 = = , ·········································9 分 的扣 0.5 分; ( +1)( +2) +1 +2
1 1 1 1 1 1 1 1
所以 = + + + = . ···················10 分 2 3 3 4 +1 +2 2 +2 或 = 2( +2).
18.解:(1)记事件 1为“甲在第一轮比赛中胜出”, 2为“甲在第二轮比赛
中胜出”, 1为“乙在第一轮比赛中胜出”, 2为“乙在第二轮比赛中胜 未说明 “相互独
出”,则 1, 2, 1, 2相互独立, 立”扣 0.5 分.
4 2 3 3
且 ( 1) = , ( 2) = , ( 1) = , ( 5 3 5 2
) = . ···················3 分
4
因为在两轮比赛中均胜出视为赢得比赛,
则 1 2为“甲赢得比赛”, 1 2为“乙赢得比赛”,
4 2 8
所以 ( 1 2) = ( 1) ( 2) = × = ,···································4 分 5 3 15
3 3 9
( 1 2) = ( 1) ( 2) = × = . ····································5 分 5 4 20
8 9
因为 > ,所以派甲参赛赢得比赛的概率更大.·······················6 分
15 20
(2)记事件 为“甲赢得比赛”, 为“乙赢得比赛”,
则 “两人中至少有一人赢得比赛” = ∪ .
8 9
由(2)知, ( ) = ( 1 2) = , ( ) = ( ) = , 15 1 2 20
8 7
所以 ( ) = 1 ( ) = 1 = , ·····································8 分
15 15
9 11
( ) = 1 ( ) = 1 = , ·········································10 分
20 20
7 11 223
所以 ( ∪ ) = 1 ( ) = 1 ( ) ( ) = 1 × = .
15 20 300
223
故两人中至少有一人赢得比赛的概率为 . ····························12 分
300
19.解:(1)由题意,可知 ≠ 1. ················································1 分
6 26
因为 = ,
3 27
1(1
6) 1(1
3) 26
所以 ÷ = , ················································3分
1 1 27
1 6 26 1
即 3 = 1 +
3 = ,解得 = , ····································5分
1 27 3
或 1
1
1 = ( ) ; 1 1 3
所以 = 1 × ( ) = 1. ···································7 分 3 ( 3)
的通项公式未化简
1 1
(2)由(1)知 = ,则
2 = , ······························8分
( 3) 1 9 1 的扣 0.5 分;
2 1所以 2 = ,且
2
1 = 1, ······················································10 分 1 9 未说明首项、公比扣 1
1
所以数列{ 2 }是以 1 为首项、公比为 的等比数列,·····················11 分 分; 9
1
1×(1 ) 9 8
所以 2 + 2 + + 2 = 9
9 1 或 .
1 2 1 = 1. ··························12 分 8×9
1
1 8 8×9
9
第 3 页 共 5 页
20.解:(1)正 ···································································2 分
5 5
2 4
(2)令 = 2,则 t x 979 , ····································3 分 i i
i 1 i 1
5 5
2
t y x y 2805, ·····················································4 分
i i i i
i 1 i 1
1 5 1 5 2
t t x 11, ······················································5 分
5 i ii 1 5 i 1
= 34. ············································································6 分
5
t y 5t yi i
i 1 2805 5×11×34 935所以b = 2 = = 2.5,························7 分 5
2 2 979 5×11 374
t 5
i t
i 1
= = 34 2.5 × 11 = 6.5,············································8 分
所以 关于 的回归方程为 = 6.5 + 2.5 ,
故 关于 的回归方程为 = 6.5 + 2.5 2.·····································9 分
(3)由(2)可得 = 6.5 + 2.5 2.
令 = 6,则 = 6.5 + 2.5 × 62 = 96.5.·····································11 分
故预测 2023 年该公司新能源汽车的年销售量为96.5万辆.·············12 分
未给出随机变量 X 的
C1×C1×C1 2
21.解:(1)恰好取到 3 种颜色的球的概率 = 2 2 23 = .···············3 分 C6 5 所有取值的扣 1 分;
(2)随机变量 的可能取值为 4,5,6,7,8. ·························4 分
当 =4 时,取出 2 个红球和 1 个白球,
C2 1
则 ( = 4) = 2
×C2 1
3 = ; ·····················································5 分 未写出“当 X=4 时,C6 10
当 =5 时,取出 2 个红球和 1 个黑球或 1 个红球和 2 个白球, 2个红球和 1个白
C2×C1+C1×C22 2 2 2 1则 ( = 5) = 3 = ;···············································6 分 球”等文字情况的不C6 5
当 =6 时,取出 1 个红球和 1 个白球和 1 个黑球, 扣分;
C12×C
1
2×C
1
则 ( = 6) = 2
2
= ; 3 ····················································7 分 C6 5
当 =7 时,取出 1 个红球和 2 个黑球或 2 个白球和 1 个黑球,
C1×C2+C2 1
则 ( = 7) = 2 2 2
×C2 1
3 = ;················································8 分 C6 5
当 =8 时,取出 2 个黑球和 1 个白球,
C22×C
1 1
则 ( = 8) = 23 = ,·······················································9 分 C6 10
所以随机变量 的分布列如下: ·······································10 分
4 5 6 7 8
1 1 2 1 1
P
10 5 5 5 10 未写出 ( )的计算过
1 1 2 1 1
所以 ( ) = 4 × + 5 × + 6 × + 7 × + 8 × = 6. ············12 分 程的扣 0.5 分.
10 5 5 5 10
第 4 页 共 5 页
22.(1)证明:因为 为数列{ }的前 n 项和,
当 = 1时, 1 + 1 = 1 + 1 = 2 1 = 2,则 1 = 1; ···················1 分 未讨论 = 1的情况
当 ≥ 2时, 1 = . 的扣 1 分;
+ = 2 ①, 1 + 1 = 2②, ······································2 分
1 ①-②,得2 = 1( ≥ 2),则 = ( ≥ 2),·····················3 分 1 2
未说明首项、公比扣 1
1
所以数列{ }是首项为 1、公比为 的等比数列.···························4 分 2 分;
1 1
(2)解:由(1)可得, = ( ) . 2
当 = 1时, 未讨论 = 1的情况1 = 1 = 1; ······················································5 分
1 1 1 2 1 1 的扣 1 分;
当 ≥ 2时, = 1 = ( ) ( ) = ( ) , ·········6 分 2 2 2
显然对于 = 1不成立,
1, = 1,
的通项公式未归纳所以 = { 1 1 ············································7 分

( ) , ≥ 2.
2 成分段形式的,扣 0.5
当 = 1时, 1 = 1 = 1; ····················································8 分 分;
1 1 2 1 1
当 ≥ 2时, = 1 [2 × + 3 × ( ) + + ( ) ] ③, 2 2 2
1 1 1 2 1 3 1
则 = [2 × ( ) + 3 × ( ) + + ( ) ] ④. ·················9 分 2 2 2 2 2
1 1 1 2 1 3 1 1 1
由③ ④,得 = [1 + ( ) + ( ) + +
③ ④的最后结果对,
( ) ( ) ]
2 2 2 2 2 2
计算过程错误的扣
1 1 2
1 [1 ( ) ]4 2 1
= {1 + 1 ( ) } 2 1 2 0.5 分;
2
1 最后结果未化简的扣
= ( + 2) ( ) 1, ·································10 分
2
0.5 分;
1 1
所以 = ( + 2) ( ) 2. ···········································11 分 2
又因为 = 1时, 1 = 3 × 1 2 = 1. 未给出 = 1时 1的
1 1
所以 = ( + 2) ( ) 2.
1
·············································12 分 值的扣 分.
2
第 5 页 共 5 页2022一2023学年度(下)联合体高二期中检测
数学
(满分:150分考试时间:120分钟)
注意事项:
1,答题时,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上,
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮
擦擦干净后,再选涂其他答案标号,
3.答非选择题时,必须使用黑色墨水笔或黑色签字笔,将答策书写在答题卡规定的位置上,
写在试题卷、草稿纸上无效,
4.考试结束后,将试题卷和答题卡一并交回.
第I卷(选择题,共60分)
一、单选邀(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,有且只有一项
是符合题目要求的)
1.已知X-3,o),P(K<2)=号则P(<4=
A号
c号
2.在等比数列{an}中,若a2=8,则1g2a1+log2a3=
)
A.8
B.6
C.4
D.3
3.课桌上有12本书,其中理科书籍有4本,现从中任意拿走6本书,用随机变量专表示这6本
书中理科书籍的本数,则概率
c4c,cC的是
()
Cf2 C
A.P(5≤1)
B.P(5=1)
C.P(5>1)
D.P(5>2)
4.数列{an}是首项为-2的等差数列,若a2+a=8,则{a}的通项公式是
()
A.a =4n-6
B.a=4n-2
C.an=-4n-2
D.an=-4n+2
5若P(B1A)=号,P(团)=子,P(B)=7,则P(AIB)-
()
A号
c

6.已知等比数列{an}为递增数列,若a3=16,且a2与a4的等差中项为20,则数列{a,}的前n
项和为
()
A.2+2-4
B.2m-2-1
C.4*1-4
D.44-l-2
高二·数学第1页(共4页)
3
2.某离散型随机变量X的分布列如下若E(X)=P(X≥1)=7,则D(X)卫
()
X
0
1
2
1
a
b

c
D.19
16
8.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现图1是古建筑中的举架结构,
AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古建筑屋顶截面
的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC,CB1,BA1是相等的步,相邻桁的举、步之比
分别为
0,CC,B,从,且构成首项为0,14的等差数列若直线0A的斜率为0.414,则该
OD,'DC 'CB'BA
数列的公差为
图1
图2
A.0.4
B.0.3
C.0.2
D.0.1
二、多选题(本大题共4小题,每小题5分,共20分.在每小题所给的四个选项中,有多项符合题
目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)
9.已知等差数列{an}的公差为d,前n项和为S.,且a2=0,S,=a4+12,则
)
A.d=1
B.a=n-2
C.a4+ao=-10
D.当n=1或2时,S,取得最小值
10.下列命题为真命题的有
A若随机变量X的方差为号,则D(5X+2=14
B.已知y关于x的回归直线方程为y=0.3-0.7x,则样本点(2,-3)的残差为-1.9
C.对于随机事件A与B,若P(B)=0.3,P(B1A)=0.7,则事件A与B独立
D.根据分类变量X与Y的成对样本数据,计算得到X2=3.712,根据a=0.05的独立性检验
(P(K2≥3.841)=0.05),有95%的把握认为X与Y有关
11.已知数列{an},a1=1,a,a1=2,n∈N”,则下列说法正确的是
A.a1=2
B.数列Ia2}是等比数列
C.a2w-1+a2n=2-l
D.an-a2m-1=2-
高二·数学第2页(共4页)
同课章节目录