7.1.2全概率公式(学案)——高中数学人教A版(2019)选择性必修第三册(无答案)

文档属性

名称 7.1.2全概率公式(学案)——高中数学人教A版(2019)选择性必修第三册(无答案)
格式 docx
文件大小 33.3KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-05-06 15:18:43

图片预览

文档简介

执笔: 审核: 授课时间:______ 班级:高三( )班 姓名:
课题:7.1.2全概率公式 课型:新授 总第1课
【学习目标】
重点:会用全概率公式计算概率.
难点:理解全概率公式
一、温故知新。阅读教材(49-52页数),回答下列问题.(学生4min)
在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率,下面我们再看一个求复杂事件概率的问题
问题二.新知探究。(学生15min,教师补充:4min)
问题1.从有 个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回.显然,第1次摸到红球的概率为.那么第2次摸到红球的概率是多大?如何计算这个概率呢?
用 Ri表示事件“第i次摸到红球”,Bi表示事件“第i次摸到蓝球”,i=1,2.事件R2可按第1次可能的摸球结果(红球或蓝球)表示为两个互斥事件的并,即R2=R1R2UB1R2.利用概率的加法公式和乘法公式,得
按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率。
一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,
且P(Ai)>0,i=1,2,…,n,则对任意的事件B Ω,有
我们称上面的公式为全概率公式.
按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率。
一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,
且P(Ai)>0,i=1,2,…,n,则对任意的事件B Ω,有
我们称上面的公式为全概率公式.
P(B)=P(Ai)P(B|Ai)
三、典例解析(16min)
例1. 某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率.
分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解。
解:设A1=“第1天去A餐厅用餐”, B1=“第1天去B餐厅用餐”,
A2=“第2天去A餐厅用餐”,则Ω=,根据题意得
P(A1)=P(B1)=0.5, P(A2|A1)=0.6, P(A2|B1)=0.8,
由全概率公式,得
P(A2)= P(A1) P(A2|A1)+ P(B1) P(A2|B1)=0.5×0.6+0.5×0.8=0.7
例2:有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.
(1)任取一个零件,计算它是次品的概率;
(2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.
总结。(2min)
练习。(8min)
1.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为 (  )
A.0.625 B.0.75 C.0.5 D.0
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________.
3.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________.