(共16张PPT)
2.4.2 圆的一般方程
Be kind, for everyone is fighting a hard battle.
content
01
已知圆上三点坐标,如何求圆的方程
02
例如,求A(0,5),B(1,-2),C(-3,-4)三点的圆的方程
把圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开
可得:x2+y2-2ax-2bx+a2+b2-r2=0.
可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.
Part one
请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆 下面我们来探讨这一方面的问题.
Add your title
例如,对于方程对其进行配方,得,因为任意一点的坐标都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.
探究:方程x2+y2+Dx+Ey+F=0中的D,E,F满足什么条件时,这个方程表示圆?
将方程x2+y2+Dx+Ey+F=0,配方可得
1.二元二次方程要想表示圆,需x2和y2的系数相同且不为0,没有xy这样的二次项.
2.几个常见圆的一般方程
(1)过原点的圆的方程:x2+y2+Dx+Ey=0(D,E不全为0),
(2)圆心在y轴上的圆的方程:x2+y2+Ey+F=0(E2-4F>0);
(3)圆心在x轴上的圆的方程,x2+y2+Dx+F=0(D2-4F>0);
(4)圆心在x轴上且过原点的圆的方程:x2+y2+Dx=0(D≠0);
(5)圆心在y轴上且过原点的圆的方程:x2+y2+Ey=0(E≠0).
归纳总结
典例
思路分析:可直接利用D2+E2-4F>0是否成立来判断,也可把左端配方,看右端是否为大于零的常数.
例1 判断方程x2+y2-4mx+2my+20m-20=0能否表示圆.若能表示圆,求出圆心和半径.
解:(方法1)由方程x2+y2-4mx+2my+20m-20=0
可知D=-4m,E=2m,F=20m-20,
∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2.
因此,当m=2时,它表示一个点;
当m≠2时,原方程表示圆,
此时,圆的圆心为(2m,-m),
Add your title
(方法2)原方程可化为(x-2m)2+(y+m)2=5(m-2)2,
因此,当m=2时,它表示一个点;
当m≠2时,原方程表示圆,
此时,圆的圆心为(2m,-m),
归纳总结
(1)计算D2+E2-4F,若其值为正,则表示圆;若其值为0,则表示一个点;若其值为负,则不表示任何图形.
任何一个圆的方程都可化为x2+y2+Dx+Ey+F=0的形式,但形如x2+y2+Dx+Ey+F=0的方程不一定表示圆.判断它是否表示圆可以有以下两种方法:
跟踪训练1若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.
例2 圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.
思路分析:由条件知,所求圆的圆心、半径均不明确,故设出圆的一般方程,用待定系数法求解.
解:设所求圆的方程为x2+y2+Dx+Ey+F=0.
∵圆C过A(1,2),B(3,4),∴D+2E+F=-5,①
3D+4E+F=-25.②
令y=0,得x2+Dx+F=0.设圆C与x轴的两个交点的横坐标为x1,x2,则
x1+x2=-D,x1x2=F.
∵|x1-x2|=6,∴(x1+x2)2-4x1x2=36,
即D2-4F=36.③
由①②③得D=12,E=-22,F=27,或D=-8,E=-2,F=7.
故圆C的方程为x2+y2+12x-22y+27=0或x2+y2-8x-2y+7=0.
归纳总结
圆的方程的求法
求圆的方程时,如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r;如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D,E,F.
例3 已知等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,
并说明它的轨迹是什么图形.
思路分析:设出点C的坐标,根据|AB|=|AC|列出方程并化简.
解:设另一端点C的坐标为(x,y).
依题意,得|AC|=|AB|.由两点间距离公式,得
Add your title
又因为A,B,C为三角形的三个顶点,
所以A,B,C三点不共线,即点B,C不能重合,
所以点C的横坐标x≠3,且点B,C不能为一直径的两端点,所以
课堂小结
Thank your for
watching !
Be kind, for everyone is fighting a hard battle.