专题05 二元一次方程组(选择题40题)(含解析)-【冲刺2023中考】真题冲刺专题(知识点+专题训练)

文档属性

名称 专题05 二元一次方程组(选择题40题)(含解析)-【冲刺2023中考】真题冲刺专题(知识点+专题训练)
格式 doc
文件大小 726.0KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2023-05-11 17:32:27

图片预览

文档简介

中小学教育资源及组卷应用平台
【真题汇编】2023年中考数学备考之二元一次方程组
1.二元一次方程的应用
二元一次方程的应用
(1)找出问题中的已知条件和未知量及它们之间的关系.
(2)找出题中的两个关键的未知量,并用字母表示出来.
(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.
(4)根据未知数的实际意义求其整数解.
2.二元一次方程组的解
(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.
3.解二元一次方程组
(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
4.由实际问题抽象出二元一次方程组
(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.
(3)找等量关系是列方程组的关键和难点,有如下规律和方法:
①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.
5.二元一次方程组的应用
(一)列二元一次方程组解决实际问题的一般步骤:
(1)审题:找出问题中的已知条件和未知量及它们之间的关系.
(2)设元:找出题中的两个关键的未知量,并用字母表示出来.
(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
(4)求解.
(5)检验作答:检验所求解是否符合实际意义,并作答.
(二)设元的方法:直接设元与间接设元.
当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.
【真题汇编】2023年中考数学备考之二元一次方程组
(选择题40题)
满分:120分 建议时间:100分钟
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
一.选择题(共40小题,满分120分,每小题3分)
1.(3分)(2022 辽宁)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是(  )
A. B.
C. D.
2.(3分)(2022 毕节市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(  )
A. B.
C. D.
3.(3分)(2022 湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是(  )
A. B.
C. D.
4.(3分)(2022 眉山)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为(  )
A. B.
C. D.
5.(3分)(2022 株洲)对于二元一次方程组,将①式代入②式,消去y可以得到(  )
A.x+2x﹣1=7 B.x+2x﹣2=7 C.x+x﹣1=7 D.x+2x+2=7
6.(3分)(2022 成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为(  )
A.
B.
C.
D.
7.(3分)(2021 南通)《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,可列方程组为(  )
A. B.
C. D.
8.(3分)(2021 益阳)解方程组时,若将①﹣②可得(  )
A.﹣2y=﹣1 B.﹣2y=1 C.4y=1 D.4y=﹣1
9.(3分)(2021 永州)中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x人参与组团,物价为y元,则以下列出的方程组正确的是(  )
A. B.
C. D.
10.(3分)(2022 日照)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(  )
A. B.
C. D.
11.(3分)(2022 齐齐哈尔)端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有(  )
A.2种 B.3种 C.4种 D.5种
12.(3分)(2022 宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是(  )
A. B.
C. D.
13.(3分)(2022 扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为(  )
A. B.
C. D.
14.(3分)(2022 宁波)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  )
A. B.
C. D.
15.(3分)(2022 杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则(  )
A.||=320 B.||=320
C.|10x﹣19y|=320 D.|19x﹣10y|=320
16.(3分)(2022 舟山)上学期某班的学生都是双人桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x人,女生y人,根据题意可得方程组为(  )
A. B.
C. D.
17.(3分)(2022 达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(  )
A. B.
C. D.
18.(3分)(2022 盘锦)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(  )
A. B.
C. D.
19.(3分)(2021 锦州)二元一次方程组的解是(  )
A. B. C. D.
20.(3分)(2021 台湾)已知捷立租车行有甲、乙两个营业据点,顾客租车后当日须于营业结束前在任意一个据点还车.某日营业结束清点车辆时,发现在甲归还的自行车比从甲出租的多4辆.若当日从甲出租且在甲归还的自行车为15辆,从乙出租且在乙归还的自行车为13辆,则关于当日从甲、乙出租的自行车数量下列比较何者正确?(  )
A.从甲出租的比从乙出租的多2辆
B.从甲出租的比从乙出租的少2辆
C.从甲出租的比从乙出租的多6辆
D.从甲出租的比从乙出租的少6辆
21.(3分)(2021 台湾)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?(  )
A.﹣15 B.﹣3 C.5 D.25
22.(3分)(2021 台湾)小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张?(  )
A.10:40 B.10:41 C.10:42 D.10:43
23.(3分)(2021 台湾)如图为某超商促销活动的内容,今阿贤到该超商拿相差4元的2种饭团各1个结账时,店员说:要不要多买2瓶指定饮料?搭配促销活动后2组优惠价的金额,只比你买2个饭团的金额多30元.若阿贤只多买1瓶指定饮料,且店员会以对消费者最便宜的方式结账,则与原本只买2个饭团相比,他要多付多少元?(  )
A.12 B.13 C.15 D.16
24.(3分)(2021 深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是(  )
A.
B.
C.
D.
25.(3分)(2021 齐齐哈尔)周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有(  )
A.3种 B.4种 C.5种 D.6种
26.(3分)(2021 黑龙江)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有(  )
A.5种 B.6种 C.7种 D.8种
27.(3分)(2021 衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组(  )
A. B.
C. D.
28.(3分)(2022 通辽)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(  )
A. B.
C. D.
29.(3分)(2022 深圳)张三经营了一家草场,草场里面种植有上等草和下等草.他卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x根,下等草一捆为y根,则下列方程正确的是(  )
A. B.
C. D.
30.(3分)(2022 黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?(  )
A.5 B.6 C.7 D.8
31.(3分)(2022 嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为(  )
A. B.
C. D.
32.(3分)(2021 淮安)《九章算术》是古代中国第一部自成体系的数学专著,其中《卷第八方程》记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的,则甲有50钱,乙若得到甲所有钱的,则乙也有50钱.问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x、y的二元一次方程组是(  )
A. B.
C. D.
33.(3分)(2021 郴州)已知二元一次方程组,则x﹣y的值为(  )
A.2 B.6 C.﹣2 D.﹣6
34.(3分)(2021 毕节市)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是(  )
A. B.
C. D.
35.(3分)(2021 广西)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为(  )
A. B.
C. D.
36.(3分)(2021 荆门)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x尺,绳子长为y尺,则下面所列方程组正确的是(  )
A. B.
C. D.
37.(3分)(2020 台湾)已知有若干片相同的拼图,其形状如图(一)所示,且拼图依同方向排列时可紧密拼成一列,此时底部可与直线贴齐.当4片拼图紧密拼成一列时长度为23公分,如图(二)所示.当10片拼图紧密拼成一列时长度为56公分,如图(三)所示.求图(一)中的拼图长度为多少公分?(  )
A.5.5 B.5.6 C.5.75 D.6.5
38.(3分)(2022 宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(  )
A.30 B.26 C.24 D.22
39.(3分)(2022 武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是(  )
A.9 B.10 C.11 D.12
40.(3分)(2021 宜昌)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是(  )
A. B.
C. D.
【真题汇编】2023年中考数学备考之二元一次方程组(选择题40题)
参考答案与试题解析
一.选择题(共40小题,满分120分,每小题3分)
1.(3分)(2022 辽宁)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是(  )
A. B.
C. D.
【解析】解:∵用绳子去量长木,绳子还剩余4.5尺,
∴x﹣y=4.5;
∵将绳子对折再量长木,长木还剩余1尺,
∴x+1=y.
∴所列方程组为.
故选:C.
2.(3分)(2022 毕节市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(  )
A. B.
C. D.
【解析】解:∵马四匹、牛六头,共价四十八两,
∴4x+6y=48;
∵马三匹、牛五头,共价三十八两,
∴3x+5y=38.
∴可列方程组为.
故选:C.
3.(3分)(2022 湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是(  )
A. B.
C. D.
【解析】解:∵组委会为每个比赛场地准备了桌子和凳子共12个,
∴x+y=12;
又∵桌子腿数与凳子腿数的和为40条,且每张桌子有4条腿,每条凳子有3条腿,
∴4x+3y=40.
∴列出的方程组为.
故选:B.
4.(3分)(2022 眉山)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为(  )
A. B.
C. D.
【解析】解:∵5头牛,2只羊共19两银子,
∴5x+2y=19;
∵2头牛,3只羊共12两银子,
∴2x+3y=12.
∴可列方程组为.
故选:A.
5.(3分)(2022 株洲)对于二元一次方程组,将①式代入②式,消去y可以得到(  )
A.x+2x﹣1=7 B.x+2x﹣2=7 C.x+x﹣1=7 D.x+2x+2=7
【解析】解:,将①式代入②式,
得x+2(x﹣1)=7,
∴x+2x﹣2=7,
故选:B.
6.(3分)(2022 成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为(  )
A.
B.
C.
D.
【解析】解:∵共买了一千个苦果和甜果,
∴x+y=1000;
∵共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,
∴x+y=999.
∴可列方程组为.
故选:A.
7.(3分)(2021 南通)《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,可列方程组为(  )
A. B.
C. D.
【解析】解:由用一根绳子去量一根长木,绳子还剩余4.5尺,可得方程y=x+4.5,
由将绳子对折再量长木,长木还剩余1尺,可得方程y=x﹣1,
故,
故选:D.
8.(3分)(2021 益阳)解方程组时,若将①﹣②可得(  )
A.﹣2y=﹣1 B.﹣2y=1 C.4y=1 D.4y=﹣1
【解析】解:,
①﹣②,得4y=﹣1,
故选:D.
9.(3分)(2021 永州)中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x人参与组团,物价为y元,则以下列出的方程组正确的是(  )
A. B.
C. D.
【解析】解:设x人参与组团,物价为y元,
由“如果每人出9元,则多了4元”,可得9x﹣y=4,
由“如果每人出6元,则少了5元”,可得y﹣6x=5,
故可得方程组,
故选:A.
10.(3分)(2022 日照)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(  )
A. B.
C. D.
【解析】解:设木头长为x尺,绳子长为y尺,
由题意可得.
故选:D.
11.(3分)(2022 齐齐哈尔)端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有(  )
A.2种 B.3种 C.4种 D.5种
【解析】解:设A种食品盒x个,B种食品盒y个,根据题意得:
8x+10y=200,
∴y=20﹣0.8x,
∴方程的正整数解为:,,,.
故选:C.
12.(3分)(2022 宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是(  )
A. B.
C. D.
【解析】解:设该店有客房x间,房客y人;
根据题意得:,
故选:B.
13.(3分)(2022 扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为(  )
A. B.
C. D.
【解析】解:设鸡有x只,兔有y只,可列方程组为:

故选:D.
14.(3分)(2022 宁波)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  )
A. B.
C. D.
【解析】解:根据题意得:,
故选:A.
15.(3分)(2022 杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则(  )
A.||=320 B.||=320
C.|10x﹣19y|=320 D.|19x﹣10y|=320
【解析】解:由题意可得:|10x﹣19y|=320.
故选:C.
16.(3分)(2022 舟山)上学期某班的学生都是双人桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x人,女生y人,根据题意可得方程组为(  )
A. B.
C. D.
【解析】解:由题意可得,

故选:A.
17.(3分)(2022 达州)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位):马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(  )
A. B.
C. D.
【解析】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.
故选:B.
18.(3分)(2022 盘锦)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(  )
A. B.
C. D.
【解析】解:设人数为x人,物价为y钱,
依题意得:.
故选:B.
19.(3分)(2021 锦州)二元一次方程组的解是(  )
A. B. C. D.
【解析】解:,
把②代入①得:4y+y=10,
解得:y=2,
把y=2代入②得:x=4,
则方程组的解集为.
故选:C.
20.(3分)(2021 台湾)已知捷立租车行有甲、乙两个营业据点,顾客租车后当日须于营业结束前在任意一个据点还车.某日营业结束清点车辆时,发现在甲归还的自行车比从甲出租的多4辆.若当日从甲出租且在甲归还的自行车为15辆,从乙出租且在乙归还的自行车为13辆,则关于当日从甲、乙出租的自行车数量下列比较何者正确?(  )
A.从甲出租的比从乙出租的多2辆
B.从甲出租的比从乙出租的少2辆
C.从甲出租的比从乙出租的多6辆
D.从甲出租的比从乙出租的少6辆
【解析】解:设当日从甲、乙出租的自行车数量分别为x辆,y辆,根据题意得:
15+(y﹣13)﹣x=4,
所以y﹣x=2,
即从甲出租的比从乙出租的少2辆.
故选:B.
21.(3分)(2021 台湾)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?(  )
A.﹣15 B.﹣3 C.5 D.25
【解析】解:,
①+②得:6y=4y+10,
∴y=5,
把y=5代入①得:x=20,
∴a+b=x+y=20+5=25,
故选:D.
22.(3分)(2021 台湾)小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张?(  )
A.10:40 B.10:41 C.10:42 D.10:43
【解析】解:设甲影印机每分钟印制x张,乙影印机每分钟印制y张,
依题意得:,
解得:,
∴==42,
∴依照小文原本的计划,甲、乙印制的总张数会在10:42达到2100张.
故选:C.
23.(3分)(2021 台湾)如图为某超商促销活动的内容,今阿贤到该超商拿相差4元的2种饭团各1个结账时,店员说:要不要多买2瓶指定饮料?搭配促销活动后2组优惠价的金额,只比你买2个饭团的金额多30元.若阿贤只多买1瓶指定饮料,且店员会以对消费者最便宜的方式结账,则与原本只买2个饭团相比,他要多付多少元?(  )
A.12 B.13 C.15 D.16
【解析】解:设价格较低的饭团的售价为x元,价格较高的饭团的售价为y元,
依题意得:,
解得:,
∴39+x﹣(x+y)=13.
故选:B.
24.(3分)(2021 深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是(  )
A.
B.
C.
D.
【解析】解:设他买了x亩好田,y亩坏田,
∵共买好、坏田1顷(1顷=100亩).
∴x+y=100;
∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,
∴300x+y=10000.
联立两方程组成方程组得:.
故选:B.
25.(3分)(2021 齐齐哈尔)周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有(  )
A.3种 B.4种 C.5种 D.6种
【解析】解:设购买口罩x包,酒精湿巾y包,
依题意得:3x+2y=30,
∴x=10﹣y.
又∵x,y均为正整数,
∴或或或,
∴小明共有4种购买方案.
故选:B.
26.(3分)(2021 黑龙江)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有(  )
A.5种 B.6种 C.7种 D.8种
【解析】解:设购买x件甲种奖品,y件乙种奖品,
依题意得:15x+10y=180,
∴x=12﹣y.
又∵x,y均为正整数,
∴或或或或,
∴共有5种购买方案.
故选:A.
27.(3分)(2021 衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组(  )
A. B.
C. D.
【解析】解:∵五只雀、六只燕,共重1斤(古时1斤=16两),
∴5x+6y=16,
∵雀重燕轻,互换其中一只,恰好一样重,
∴5x﹣x+y=6y﹣y+x,即4x+y=5y+x,
∴,
故选:A.
28.(3分)(2022 通辽)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(  )
A. B.
C. D.
【解析】解:依题意得:.
故选:C.
29.(3分)(2022 深圳)张三经营了一家草场,草场里面种植有上等草和下等草.他卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x根,下等草一捆为y根,则下列方程正确的是(  )
A. B.
C. D.
【解析】解:设上等草一捆为x根,下等草一捆为y根,
根据题意可列方程组为:.
故选:C.
30.(3分)(2022 黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?(  )
A.5 B.6 C.7 D.8
【解析】解:设购买毛笔x支,围棋y副,
根据题意,得15x+20y=360,
∴y=18﹣x,
∵两种都买,
∴18﹣x>0,x、y都是正整数,
解得x<24,
故x是4的倍数且x<24,
∴x=4,y=15或x=8,y=12或x=12,y=9或x=16,y=6或x=20,y=3;
∴共有5种购买方案,
故选:A.
31.(3分)(2022 嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为(  )
A. B.
C. D.
【解析】解:根据题意得:,
即,
故选:A.
32.(3分)(2021 淮安)《九章算术》是古代中国第一部自成体系的数学专著,其中《卷第八方程》记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的,则甲有50钱,乙若得到甲所有钱的,则乙也有50钱.问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x、y的二元一次方程组是(  )
A. B.
C. D.
【解析】解:设甲、乙的持钱数分别为x,y,
根据题意可得:,
故选:B.
33.(3分)(2021 郴州)已知二元一次方程组,则x﹣y的值为(  )
A.2 B.6 C.﹣2 D.﹣6
【解析】解:,
①+②,得3x﹣3y=6,
两边都除以3得:x﹣y=2,
故选:A.
34.(3分)(2021 毕节市)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是(  )
A. B.
C. D.
【解析】解:设甲需带钱x,乙带钱y,
根据“甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50”,得,
故选:A.
35.(3分)(2021 广西)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为(  )
A. B.
C. D.
【解析】解:设共有y人,x辆车,
依题意得:.
故选:B.
36.(3分)(2021 荆门)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x尺,绳子长为y尺,则下面所列方程组正确的是(  )
A. B.
C. D.
【解析】解:设木条长x尺,绳子长y尺,那么可列方程组为:.
故选:A.
37.(3分)(2020 台湾)已知有若干片相同的拼图,其形状如图(一)所示,且拼图依同方向排列时可紧密拼成一列,此时底部可与直线贴齐.当4片拼图紧密拼成一列时长度为23公分,如图(二)所示.当10片拼图紧密拼成一列时长度为56公分,如图(三)所示.求图(一)中的拼图长度为多少公分?(  )
A.5.5 B.5.6 C.5.75 D.6.5
【解析】解:将图(一)中的拼图长度看成(a+b)公分,
依题意得:,
解得:,
∴a+b==6.5(公分).
故选:D.
38.(3分)(2022 宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(  )
A.30 B.26 C.24 D.22
【解析】解:设1艘大船可载x人,1艘小船可载y人,
依题意得:,
①+②得:3x+3y=78,
∴x+y=26,
即1艘大船与1艘小船一次共可以满载游客的人数为26,
故选:B.
39.(3分)(2022 武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是(  )
A.9 B.10 C.11 D.12
【解析】解:∵每一横行、每一竖列以及两条对角线上的3个数之和相等,
∴最左下角的数为:6+20﹣22=4,
∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,
最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,
∴,
解得:,
∴x+y=12,
故选:D.
40.(3分)(2021 宜昌)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是(  )
A. B.
C. D.
【解析】解:设有x人,买此物的钱数为y,
由题意得:,
故选:A.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录