中小学教育资源及组卷应用平台
【真题汇编】2023年中考数学备考之图形的旋转
1.旋转的性质
(1)旋转的性质:
对应点到旋转中心的距离相等.
对应点与旋转中心所连线段的夹角等于旋转角.
旋转前、后的图形全等.
(2)旋转三要素:①旋转中心;旋转方向;旋转角度.
(3)注意:三要素中只要任意改变一个,图形就会不一样.
2.中心对称
(1)中心对称的定义
把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..
(2)中心对称的性质
①关于中心对称的两个图形能够完全重合;
②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
3.坐标与图形变化-旋转
(1)关于原点对称的点的坐标
P(x,y) P(﹣x,﹣y)
(2)旋转图形的坐标
图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
4.作图-旋转变换
(1)旋转图形的作法:
根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.
5.利用旋转设计图案
由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.
利用旋转设计图案关键是利用旋转中的三个要素(旋转中心;旋转方向;旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.
【真题汇编】2023年中考数学备考之图形的旋转
(选择题40题)
满分:120分 建议时间:100分钟
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
一.选择题(共40小题,满分120分,每小题3分)
1.(3分)(2022 河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
2.(3分)(2021 衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是( )
A.∠α=2∠β B.2∠α=3∠β
C.4∠α+∠β=180° D.3∠α+2∠β=180°
3.(3分)(2021 黔东南州)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60°,使点B落在点B′的位置,连接BB′,过点D作DE⊥BB′,交BB′的延长线于点E,则B′E的长为( )
A. B. C. D.
4.(3分)(2022 包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于( )
A.3 B.2 C.3 D.2
5.(3分)(2022 常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BC B.BF∥DE,BF=DE
C.∠DFC=90° D.DG=3GF
6.(3分)(2022 天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC
7.(3分)(2021 广州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为( )
A. B. C. D.
8.(3分)(2022 益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③ B.①②④ C.①③④ D.②③④
9.(3分)(2022 呼和浩特)如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )
A.90°+α B.90°﹣α C.180°﹣α D.α
10.(3分)(2022 南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
11.(3分)(2022 内蒙古)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )
A. B. C.1﹣ D.1﹣
12.(3分)(2021 大连)如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A'B'C,点B的对应点B'在边AC上(不与点A,C重合),则∠AA'B'的度数为( )
A.α B.α﹣45° C.45°﹣α D.90°﹣α
13.(3分)(2021 河南)如图, OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )
A.(2,0) B.(2,0) C.(2+1,0) D.(2+1,0)
14.(3分)(2022 上海)有一个正n边形旋转90°后与自身重合,则n为( )
A.6 B.9 C.12 D.15
15.(3分)(2022 遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为( )
A.﹣3 B.﹣1 C.1 D.3
16.(3分)(2021 陕西)如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为( )
A.2 B.5 C. D.2
17.(3分)(2022 德州)下列图形是中心对称图形的是( )
A. B. C. D.
18.(3分)(2022 襄阳)襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃圾分类回收.下列图形分别是可回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
19.(3分)(2022 枣庄)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
20.(3分)(2022 青海)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )
A.赵爽弦图 B.笛卡尔心形线
C.科克曲线 D.斐波那契螺旋线
21.(3分)(2022 张家界)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
22.(3分)(2022 青岛)北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
23.(3分)(2022 临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
24.(3分)(2022 绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
25.(3分)(2022 淄博)下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
26.(3分)(2022 丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
27.(3分)(2022 长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )
A.(﹣5,1) B.(5,﹣1) C.(1,5) D.(﹣5,﹣1)
28.(3分)(2022 雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4 B.4 C.12 D.﹣12
29.(3分)(2022 青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是( )
A.(2,0) B.(﹣2,﹣3) C.(﹣1,﹣3) D.(﹣3,﹣1)
30.(3分)(2021 攀枝花)如图,在平面直角坐标系中,线段OA与x轴正方向夹角为45°,且OA=2,若将线段OA绕点O沿逆时针方向旋转105°到线段OA′,则此时点A′的坐标为( )
A.(,﹣1) B.(﹣1,) C.(﹣,1) D.(1,﹣)
31.(3分)(2021 青岛)如图,将线段AB先绕原点O按逆时针方向旋转90°,再向下平移4个单位,得到线段A'B',则点A的对应点A'的坐标是( )
A.(1,﹣6) B.(﹣1,6) C.(1,﹣2) D.(﹣1,﹣2)
32.(3分)(2022 枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
33.(3分)(2022 聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )
A.(﹣2,3) B.(﹣3,2) C.(﹣2,4) D.(﹣3,3)
34.(3分)(2022 绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为( )
A.(﹣5,2) B.(5,2) C.(2,﹣5) D.(5,﹣2)
35.(3分)(2022 杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )
A.M1 B.M2 C.M3 D.M4
36.(3分)(2021 牡丹江)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是( )
A.(4,2)或(﹣4,2) B.(2,﹣4)或(﹣2,4)
C.(﹣2,2)或(2,﹣2) D.(2,﹣2)或(﹣2,2)
37.(3分)(2021 黄石)如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(﹣1,0),现将△ABC绕A点按逆时针方向旋转90°,则旋转后点C的坐标是( )
A.(2,﹣3) B.(﹣2,3) C.(﹣2,2) D.(﹣3,2)
38.(3分)(2021 聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为( )
A.(,) B.(,) C.(,) D.(,)
39.(3分)(2022 宁夏)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换( )
A.平移 B.轴对称 C.旋转 D.位似
40.(3分)(2022 内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
【真题汇编】2023年中考数学备考之图形的旋转(选择题40题)
参考答案与试题解析
一.选择题(共40小题,满分120分,每小题3分)
1.(3分)(2022 河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
【解析】解:∵∠ACB=90°,AC=6,BC=8,
∴AB=10,
∴Rt△ABC所扫过的面积=+×6×8=25π+24,
故选:A.
2.(3分)(2021 衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是( )
A.∠α=2∠β B.2∠α=3∠β
C.4∠α+∠β=180° D.3∠α+2∠β=180°
【解析】解:∵AC平分∠B′AC′,
∴∠B'AC=∠C'AC,
∵菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,
∴∠BAB'=∠CAC'=∠α,
∵AC平分∠BAD,
∴∠BAC=∠DAC,
∴∠BAB'=∠DAC',
∴∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,
∵AD∥BC,
∴∠B+∠BAD=180°,
∴4∠α+∠β=180°,
故选:C.
3.(3分)(2021 黔东南州)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60°,使点B落在点B′的位置,连接BB′,过点D作DE⊥BB′,交BB′的延长线于点E,则B′E的长为( )
A. B. C. D.
【解析】解:分别延长AD和BE交于点F,
由题知,AB=2,∠ABF=60°,
∴BF=2AB=4,AF=AB=2,∠F=90°﹣∠ABF=30°,
∴DF=AF﹣AD=2﹣2,
∴EF=DF=(2)×=3﹣,
由题知,△ABB'是等边三角形,
∴B'E=BF﹣BB'﹣EF=4﹣2﹣(3﹣)=﹣1,
故选:A.
4.(3分)(2022 包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于( )
A.3 B.2 C.3 D.2
【解析】解:连接AA′,如图,
∵∠ACB=90°,∠BAC=30°,BC=2,
∴AC=BC=2,∠B=60°,
∵将△ABC绕点C顺时针旋转得到△A'B'C,
∴CA=CA′,CB=CB′,∠ACA′=∠BCB′,
∵CB=CB′,∠B=60°,
∴△CBB′为等边三角形,
∴∠BCB′=60°,
∴∠ACA′=60°,
∴△CAA′为等边三角形,
过点A作AD⊥A'C于点D,
∴CD=AC=,
∴AD=CD==3,
∴点A到直线A'C的距离为3,
故选:C.
5.(3分)(2022 常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BC B.BF∥DE,BF=DE
C.∠DFC=90° D.DG=3GF
【解析】解:A、由旋转的性质可知,CB=CE,∠BCE=60°,
∴△BCE为等边三角形,
∴BE=BC,本选项结论正确,不符合题意;
B、在Rt△ABC中,∠ABC=90°,∠ACB=30°,点F是边AC的中点,
∴AB=AC=CF=BF,
由旋转的性质可知,CA=CD,∠ACD=60°,
∴∠A=∠ACD,
在△ABC和△CFD中,
,
∴△ABC≌△CFD(SAS),
∴DF=BC=BE,
∵DE=AB=BF,
∴四边形EBFD为平行四边形,
∴BF∥DE,BF=DE,本选项结论正确,不符合题意;
C、∵△ABC≌△CFD,
∴∠DFC=∠ABC=90°,本选项结论正确,不符合题意;
D、在Rt△GFC中,∠GCF=30°,
∴GF=CF,
同理可得,DF=CF,
∴DF=3GF,故本选项结论错误,符合题意;
故选:D.
6.(3分)(2022 天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC
【解析】解:A、∵AB=AC,
∴AB>AM,
由旋转的性质可知,AN=AM,
∴AB>AN,故本选项结论错误,不符合题意;
B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;
C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,
∵AM=AN,AB=AC,
∴∠ABC=∠AMN,
∴∠AMN=∠ACN,本选项结论正确,符合题意;
D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;
故选:C.
7.(3分)(2021 广州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为( )
A. B. C. D.
【解析】解:∵∠C=90°,AC=6,BC=8,
∴AB===10,
∵将△ABC绕点A逆时针旋转得到△AB′C′,
∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,
∴BC'=4,
∴B'B===4,
∴sin∠BB′C′===,
故选:C.
8.(3分)(2022 益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③ B.①②④ C.①③④ D.②③④
【解析】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,
∴BC=B′C′.故①正确;
②∵△ABC绕A点逆时针旋转50°,
∴∠BAB′=50°.
∵∠CAB=20°,
∴∠B′AC=∠BAB′﹣∠CAB=30°.
∵∠AB′C′=∠ABC=30°,
∴∠AB′C′=∠B′AC.
∴AC∥C′B′.故②正确;
③在△BAB′中,
AB=AB′,∠BAB′=50°,
∴∠AB′B=∠ABB′=(180°﹣50°)=65°.
∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.
∴C′B′与BB′不垂直.故③不正确;
④在△ACC′中,
AC=AC′,∠CAC′=50°,
∴∠ACC′=(180°﹣50°)=65°.
∴∠ABB′=∠ACC′.故④正确.
∴①②④这三个结论正确.
故选:B.
9.(3分)(2022 呼和浩特)如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )
A.90°+α B.90°﹣α C.180°﹣α D.α
【解析】解:由旋转的性质可知,BC=CD,∠B=∠EDC,∠A=∠E,∠ACE=∠BCD,
∵∠BCD=α,
∴∠B=∠BDC==90°﹣,∠ACE=α,
∵∠ACB=90°,
∴∠A=90°﹣∠B=.
∴∠E=.
∴∠EFC=180°﹣∠ECF﹣∠E=180°﹣α.
故选:C.
10.(3分)(2022 南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
【解析】解:∵∠B=30°,∠C=90°,
∴∠CAB=180°﹣∠B﹣∠C=60°,
∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,
∴∠C′AB′=∠CAB=60°.
∵点B′恰好落在CA的延长线上,
∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.
故选:B.
11.(3分)(2022 内蒙古)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )
A. B. C.1﹣ D.1﹣
【解析】解:如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选:C.
12.(3分)(2021 大连)如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A'B'C,点B的对应点B'在边AC上(不与点A,C重合),则∠AA'B'的度数为( )
A.α B.α﹣45° C.45°﹣α D.90°﹣α
【解析】解:∵将△ABC绕点C顺时针旋转90°得到△A'B'C,
∴AC=A'C,∠BAC=∠CA'B',∠ACA'=90°,
∴△ACA'是等腰直角三角形,
∴∠CA'A=45°,
∵∠BAC=α,
∴∠CA'B'=α,
∴∠AA'B'=45°﹣α.
故选:C.
13.(3分)(2021 河南)如图, OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )
A.(2,0) B.(2,0) C.(2+1,0) D.(2+1,0)
【解析】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,
∵A(1,2),
∴AD=1,OD=2,
∴OA=.
由题意:△OA′D′≌△OAD,
∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.
则OD′⊥A′E,OA平分∠A′OE,
∴△A′OE为等腰三角形.
∴OE=OA′=,ED′=A′D′=1.
∵EO⊥OC,OD′⊥EC,
∴△OED′∽△CEO.
∴.
∴.
∴OC=2.
∴C(2,0).
故选:B.
14.(3分)(2022 上海)有一个正n边形旋转90°后与自身重合,则n为( )
A.6 B.9 C.12 D.15
【解析】解:A.正六边形旋转90°后不能与自身重合,不合题意;
B.正九边形旋转90°后不能与自身重合,不合题意;
C.正十二边形旋转90°后能与自身重合,符合题意;
D.正十五边形旋转90°后不能与自身重合,不合题意;
故选:C.
15.(3分)(2022 遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为( )
A.﹣3 B.﹣1 C.1 D.3
【解析】解:∵点A(a,1)与点B(﹣2,b)关于原点成中心对称,
∴a=2,b=﹣1,
∴a+b=1,
故选:C.
16.(3分)(2021 陕西)如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为( )
A.2 B.5 C. D.2
【解析】解:如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.
∵四边形ABCD是矩形,
∴OA=OD=OB,
∵OM⊥AD,
∴AM=DM=3,
∴OM=AB=2,
∵AE=2,
∴EM=AM﹣AE=1,
∴OE===,
同法可得OF=,
∴OE+OF=2,
故选:D.
17.(3分)(2022 德州)下列图形是中心对称图形的是( )
A. B. C. D.
【解析】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.
选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.
故选:B.
18.(3分)(2022 襄阳)襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃圾分类回收.下列图形分别是可回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
【解析】解:A、不是轴对称图形,也不是中心对称图形,故本选不符合题意;
B、是轴对称图形,但不是中心对称图形,故本选项不符合题意;
C、既是中心对称图形又是轴对称图形,故本选项正确,符合题意;
D、不是轴对称图形,也不是中心对称图形,故本选不符合题意;
故选:C.
19.(3分)(2022 枣庄)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.是中心对称图形,不是轴对称图形,故此选项不合题意;
D.既是轴对称图形又是中心对称图形,故此选项符合题意;
故选:D.
20.(3分)(2022 青海)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )
A.赵爽弦图 B.笛卡尔心形线
C.科克曲线 D.斐波那契螺旋线
【解析】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.既是中心对称图形,也是轴对称图形,故此选项符合题意;
D.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
故选:C.
21.(3分)(2022 张家界)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
22.(3分)(2022 青岛)北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解析】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;
B.是中心对称图形,不是轴对称图形,故此选项不合题意;
C.既是中心对称图形,也是轴对称图形,故此选项符合题意;
D.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;
故选:C.
23.(3分)(2022 临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
24.(3分)(2022 绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
25.(3分)(2022 淄博)下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解析】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.不是中心对称图形,是轴对称图形,故此选项不合题意;
D.既是轴对称图形,又是中心对称图形,故此选项符合题意;
故选:D.
26.(3分)(2022 丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是( )
A.OE∥AB
B.四边形ABCD是中心对称图形
C.△EOD的周长等于3cm
D.若∠ABC=90°,则四边形ABCD是轴对称图形
【解析】解:∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵对角线AC与BD交于点O,点E是AD的中点,
∴OE是△ABD的中位线,
∴OE∥AB,
∴A选项结论正确,不符合题意;
∵四边形ABCD是中心对称图形,
∴B选项结论正确,不符合题意;
∵△ABD的周长为12cm,
∴△EOD的周长等于6cm,
∴C选项结论错误,符合题意;
若∠ABC=90°,则四边形ABCD是矩形,是轴对称图形,
∴D选项结论正确,不符合题意;
故选:C.
27.(3分)(2022 长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )
A.(﹣5,1) B.(5,﹣1) C.(1,5) D.(﹣5,﹣1)
【解析】解:根据中心对称的性质,可知:点(5,1)关于原点O中心对称的点的坐标为(﹣5,﹣1).
故选:D.
28.(3分)(2022 雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4 B.4 C.12 D.﹣12
【解析】解:∵在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),
∴得a+2=﹣4,﹣b=﹣2,
解得a=﹣6,b=2,
∴ab=﹣12.
故选:D.
29.(3分)(2022 青岛)如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是( )
A.(2,0) B.(﹣2,﹣3) C.(﹣1,﹣3) D.(﹣3,﹣1)
【解析】解:由图中可知,点A(﹣2,3),将△ABC先向右平移3个单位,得坐标为:(1,3),再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是(﹣1,﹣3).
故选:C.
30.(3分)(2021 攀枝花)如图,在平面直角坐标系中,线段OA与x轴正方向夹角为45°,且OA=2,若将线段OA绕点O沿逆时针方向旋转105°到线段OA′,则此时点A′的坐标为( )
A.(,﹣1) B.(﹣1,) C.(﹣,1) D.(1,﹣)
【解析】解:如图,过点A′作A′B⊥x轴于点B,
∵将线段OA绕点O沿逆时针方向旋转105°到线段OA′,
∴OA′=OA=2,∠AOA′=105°,
∴∠A′OB=180°﹣45°﹣105°=30°.
在直角△A′OB中,∵∠OBA′=90°,∠A′OB=30°,
∴A′B=OA′=1,OB=A′B=,
∴点A′的坐标为(﹣,1).
故选:C.
31.(3分)(2021 青岛)如图,将线段AB先绕原点O按逆时针方向旋转90°,再向下平移4个单位,得到线段A'B',则点A的对应点A'的坐标是( )
A.(1,﹣6) B.(﹣1,6) C.(1,﹣2) D.(﹣1,﹣2)
【解析】解:A点绕O点逆时针旋转90°,得到点A''(﹣1,2),
A''向下平移4个单位,得到A'(﹣1,﹣2),
故选:D.
32.(3分)(2022 枣庄)如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是( )
A.(4,0) B.(2,﹣2) C.(4,﹣1) D.(2,﹣3)
【解析】解:作出旋转后的图形如下:
∴B'点的坐标为(4,﹣1),
故选:C.
33.(3分)(2022 聊城)如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )
A.(﹣2,3) B.(﹣3,2) C.(﹣2,4) D.(﹣3,3)
【解析】解:连接AP,A1P.
∵线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,
∴A的对应点为A1,
∴∠APA1=90°,
∴旋转角为90°,
∴点C绕点P逆时针旋转90°得到的C1点的坐标为(﹣2,3),
故选:A.
34.(3分)(2022 绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为( )
A.(﹣5,2) B.(5,2) C.(2,﹣5) D.(5,﹣2)
【解析】解:过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,如图,
∵A点坐标为(2,5),
∴OB=2,AB=5.
由题意:∠AOA′=90°,OA=OA′.
∴∠AOB+∠A′OC=90°.
∵∠A′OC+∠A′=90°,
∴∠A′=∠AOB.
在△A′OC和△OAB中,
,
∴△A′OC≌△OAB(AAS).
∴A′C=OB=2,OC=AB=5,
∴A′(﹣5,2).
故选:A.
35.(3分)(2022 杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )
A.M1 B.M2 C.M3 D.M4
【解析】解:∵点A(4,2),点P(0,2),
∴PA⊥y轴,PA=4,
由旋转得:∠APB=60°,AP=PB=4,
如图,过点B作BC⊥y轴于C,
∴∠BPC=30°,
∴BC=2,PC=2,
∴B(2,2+2),
设直线PB的解析式为:y=kx+b,
则,
∴,
∴直线PB的解析式为:y=x+2,
当y=0时,x+2=0,x=﹣,
∴点M1(﹣,0)不在直线PB上,
当x=﹣时,y=﹣3+2=﹣1,
∴M2(﹣,﹣1)在直线PB上,
当x=1时,y=+2,
∴M3(1,4)不在直线PB上,
当x=2时,y=2+2,
∴M4(2,)不在直线PB上.
故选:B.
36.(3分)(2021 牡丹江)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是( )
A.(4,2)或(﹣4,2) B.(2,﹣4)或(﹣2,4)
C.(﹣2,2)或(2,﹣2) D.(2,﹣2)或(﹣2,2)
【解析】解:如图,过点A作AH⊥OB于H,设OH=m,则BH=6﹣m,
∵AH2=OA2﹣OH2=AB2﹣BH2,
∴42﹣m2=(2)2﹣(6﹣m)2,
∴m=2,
∴AH==2,
∴A(2,2),
若将△AOB绕原点O顺时针旋转90°,则旋转后点A的对应点A′(2,﹣2),
若将△AOB绕原点O逆时针旋转90°,则旋转后点A的对应点A′(﹣2,2),
故选:C.
37.(3分)(2021 黄石)如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(﹣1,0),现将△ABC绕A点按逆时针方向旋转90°,则旋转后点C的坐标是( )
A.(2,﹣3) B.(﹣2,3) C.(﹣2,2) D.(﹣3,2)
【解析】解:观察图象,可知C′(﹣2,3),
故选:B.
38.(3分)(2021 聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为( )
A.(,) B.(,) C.(,) D.(,)
【解析】解:如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.
∵A(0,2),B(﹣1,0),
∴OB=1,OA=2,
∴AB===,
∵ OB OA= AB OT,
∴OT==,
∴AT===,
∵∠AOR=∠AOB=90°,
∴∠AOT=∠A1OR,
∵∠ATO=∠A1RO=90°,
∴△ATO∽△A1RO,
∴==,
∴1==,
∴OR=,RA1=,
∴A1(,),
故选:A.
39.(3分)(2022 宁夏)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换( )
A.平移 B.轴对称 C.旋转 D.位似
【解析】解:根据位似的定义可知:三角尺与影子之间属于位似.故选:D.
40.(3分)(2022 内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
【解析】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE;故选:D.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)