立体几何
单选
1.(广东省广州市2023届高三二模)木升在古代多用来盛装粮食作物,是农家必备的用具,如图为一升制木升,某同学制作了一个高为40的正四棱台木升模型,已知该正四棱台的所有顶点都在一个半径为50的球O的球面上,且一个底而的中心与球O的球心重合,则该正四棱台的侧面与底面所成二面角的正弦值为( )
B. C. D.
【详解】如图:正四棱台,由题意可知:是底面正方形的中心也是球O的球心,
且,所以 ,进而可得
取的中点为,过的中点作,连接,
所以 ,,故,
在直角三角形中, 故,
由于,所以即为正四棱台的侧面与底面所成二面角,故正弦值为,
故选:A
2.(广东省深圳市2023届高三二模)设表面积相等的正方体、正四面体和球的体积分别为、和,则( )
A. B. C. D.
【详解】设正方体棱长为,正四面体棱长为,球的半径为,面积为.
正方体表面积为,所以,
所以,;
如图,正四面体,为的中点,为的中心,则是底面上的高.
则,,所以,
所以,
所以,正四面体的表面积为,所以.
又为的中心,所以.
又根据正四面体的性质,可知,
所以,
所以,;
球的表面积为,所以,
所以,.
因为,
所以,,
所以,.
故选:B.
3.(山东省济南市2023届高三二模)17世纪30年代,意大利数学家卡瓦列利在《不可分量几何学》一书中介绍了利用平面图形旋转计算球体体积的方法.如图,是一个半圆,圆心为O,ABCD是半圆的外切矩形.以直线OE为轴将该平面图形旋转一周,记△OCD,阴影部分,半圆所形成的几何体的体积分别为,,,则下列说法正确的是( )
B. C. D.
【详解】由旋转体的概念可得:△OCD、阴影部分、半圆所形成的几何体分别为圆锥、圆柱减去同半径的半球、半球,易知OE=DE,
设DE=OE=r.
故,,,
显然,且.
故选:D.
4.(浙江省杭州市2023届高三下学期教学质量检测(二模))如图,点、、、、为正方体的顶点或所在棱的中点,则下列各图中,不满足直线平面的是( )
A. B.
C. D.
【详解】对于A选项,如下图所示,在正方体中,且,
因为、分别为、的中点,则且,
所以,四边形为平行四边形,所以,,
因为平面,平面,所以,平面,
同理可证平面,
因为,、平面,所以,平面平面,
因为平面,故平面,A满足;
对于B选项,如下图所示,连接,
在正方体中,且,
因为、分别为、的中点,则且,
所以,四边形为平行四边形,故,
因为、分别为、的中点,则,所以,,
因为平面,平面,所以,平面,B满足;
对于C选项,如下图所示,在正方体中,取的中点,
连接、、,
因为且,、分别为、的中点,
所以,且,故四边形为平行四边形,则,
因为、分别为、的中点,所以,,则,
所以,、、、四点共面,
因为且,则四边形为平行四边形,所以,,
因为、分别为、的中点,则,所以,,
因为平面,平面,所以,平面,C满足;
对于D选项,如下图所示,在正方体中,取的中点,
连接、、、、、,
因为且,、分别为、的中点,则且,
所以,四边形为平行四边形,则,
因为、分别为、的中点,所以,,故,
所以,、、、四点共面,
同理可证,故,同理可得,,
反设平面,因为,且平面,则平面,
但与平面有公共点,这与平面矛盾,故平面,D不满足.
故选:D.
多选
5.(广东省佛山市2023届高三二模)四面体中,,,,,,平面与平面的夹角为,则的值可能为( )
A. B. C. D.
【详解】在四面体中,,,则是二面角的平面角,如图,
,而,,,
,
因为平面与平面的夹角为,则当时,,
当时,,
所以的值可能为,.
故选:AD
6.(广东省广州市2023届高三二模)已知正四面体的棱长为2,点,分别为和的重心,为线段上一点,则下列结论正确的是( )
A.若取得最小值,则
B.若,则平面
C.若平面,则三棱锥外接球的表面积为
D.直线到平面的距离为
【详解】将正四面体放入正方体中,以点为原点,以,,所在直线为轴,轴,轴,如图所示,
因为正四面体的长为2,
所以正方体的棱长为,
则,,,
因为点,分别为和的重心,
所以点的坐标为,点的坐标为
所以
设,则,
所以,
所以,
,
对于A:因为,
,
所以,
当时,即,,取得最小值,故A错误;
对于B:若,则,
所以,
因为,,设平面的一个法向量为,
则,取,则,
因为,
所以平面,即平面,故B正确;
对于C:若平面,则,即,
,即,
设平面的一个法向量为,因为,,
则,取,则,
因为,
所以平面,则三棱锥外接球的球心在直线上,
又因为点为等边三角形的重心,
所以点为等边三角形的外心,外接圆半径为,
设三棱锥外接球的半径为,
则,即,解得,
所以三棱锥P-ABC外接球的表面积为,故C选项正确;
对于D:因为点的坐标为,点的坐标为,
所以,
设平面的一个法向量为,
因为,,
所以,取,则,
因为,且直线平面,
所以直线平面,
所以点到平面的距离就是直线到平面的距离,
则点到平面的距离,
即直线到平面的距离为,故D正确,
故选:BCD.
7.(广东省深圳市2023届高三二模)如图,在矩形AEFC中,,EF=4,B为EF中点,现分别沿AB、BC将△ABE、△BCF翻折,使点E、F重合,记为点P,翻折后得到三棱锥P-ABC,则( )
A.三棱锥的体积为 B.直线PA与直线BC所成角的余弦值为
C.直线PA与平面PBC所成角的正弦值为 D.三棱锥外接球的半径为
【详解】由题意可得,
又平面,
所以平面,
在中,,边上的高为,
所以,故A错误;
对于B,在中,,
,
所以直线PA与直线BC所成角的余弦值为,故B正确;
对于C,,
设点到平面的距离为,
由,得,解得,
所以直线PA与平面PBC所成角的正弦值为,故C错误;
由B选项知,,则,
所以的外接圆的半径,
设三棱锥外接球的半径为,
又因为平面,
则,所以,
即三棱锥外接球的半径为,故D正确.
故选:BD.
8.(湖北省武汉市2023届高三下学期四月调研)三棱锥中,,,,直线PA与平面ABC所成的角为,直线PB与平面ABC所成的角为,则下列说法中正确的有( )
A.三棱锥体积的最小值为
B.三棱锥体积的最大值为
C.直线PC与平面ABC所成的角取到最小值时,二面角的平面角为锐角
D.直线PC与平面ABC所成的角取到最小值时,二面角的平面角为钝角
【详解】如图(1)所示,作平面,连接,
因为直线PA与平面ABC所成的角为,直线PB与平面ABC所成的角为,
所以,即
所以,即,
以所在的直线为轴,以的垂直平分线为轴,建立如图(2)平面直角坐标系,
设,,,
则,整理得,
可得圆心,半径,
设点圆与轴的交点分别为,可得,
因为,所以
又由且, 所以,
则,,所以A正确,B错误;
因为,可设,
设与平面所成角为,且,
可得,且,
又由
,
令,根据斜率的结合意义,可得表示圆与定点连线的斜率,
又由与圆相切时,
可得,解得或,即,
当时,此时取得最小值,即最小时,此时H在外部,
如图(3)所示,此时二面角的平面角为锐角,的平面角为钝角,所以C、D正确.
故选:ACD.
9.(山东省济南市2023届高三二模)如图所示,在菱形中,,分别是线段的中点,将沿直线折起得到三棱锥,则在该三棱锥中,下列说法正确的是( )
A.直线平面
B.直线与是异面直线
C.直线与可能垂直
D.若,则二面角的大小为
【详解】对于A,分别为中点,,
平面,平面,平面,A正确;
对于B,平面,平面,,
与为异面直线,B正确;
对于C,设菱形的边长为,又,则,
,,
,
,,
即与不可能垂直,C错误;
对于D,取中点,连接,
为等边三角形,,,
即为二面角的平面角,
设菱形的边长为,则,
,
,
又,,解得:,
二面角的大小为,D正确.
故选:ABD.
10.(浙江省杭州市2023届高三下学期教学质量检测(二模))如图圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,,为圆柱上下底面的圆心,O为球心,EF为底面圆的一条直径,若球的半径,则( )
A.球与圆柱的体积之比为
B.四面体CDEF的体积的取值范围为
C.平面DEF截得球的截面面积最小值为
D.若P为球面和圆柱侧面的交线上一点,则的取值范围为
【详解】对于A,球的体积为,圆柱的体积,则球与圆柱的体积之比为,A正确;
对于B,设为点到平面的距离,,而平面经过线段的中点,
四面体CDEF的体积,B错误;
对于C,过作于,如图,而,则,
又,于是,设截面圆的半径为,球心到平面的距离为,则,
又,则平面DEF截球的截面圆面积,C错误;
对于D,令经过点P的圆柱的母线与下底面圆的公共点为Q,连接,
当与都不重合时,设,则,当与之一重合时,上式也成立,
因此,,
则,
令,则,而,即,
因此,解得,所以的取值范围为,D正确.
故选:AD
填空
11.(湖北省武汉市2023届高三下学期四月调研)半正多面体亦称“阿基米德体”,是以边数不全相同的正多边形为面的多面体.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它的各棱长都相等,其中八个面为正三角形,六个面为正方形,称这样的半正多面体为二十四等边体.
则得到的二十四等边体与原正方体的体积之比为______.
【详解】设棱长为2,则
所以原正方体的体积为,
所以二十四等边体为,
所以二十四等边体与原正方体的体积之比为.
故答案为:.
解答
12.(广东省佛山市2023届高三二模)中国正在由“制造大国”向“制造强国”迈进,企业不仅仅需要大批技术过硬的技术工人,更需要努力培育工人们执着专注、精益求精、一丝不苟、追求卓越的工匠精神,这是传承工艺、革新技术的重要基石.如图所示的一块木料中,是正方形,平面,,点,是,的中点.
(1)若要经过点和棱将木料锯开,在木料表面应该怎样画线,请说明理由并计算截面周长;
(2)若要经过点B,E,F将木料锯开,在木料表面应该怎样画线,请说明理由.
【详解】(1)因为平面,平面,
所以平面,又平面,
设平面平面,则,
设的中点为,连接,则,又,
所以,即为,就是应画的线,
因为平面,平面,
所以,又,,平面,
所以平面,平面,
所以,即截面为直角梯形,又,
所以,,
所以,截面周长为;
(2)以点为坐标原点,,,分别为,,轴的正向建立空间直角坐标系,
则,,,,,,,
所以,
设平面的法向量为,
则,令,可得,
设平面,设,又,
∴,,
由,可得,即,
即为的三等分点,连接,即就是应画的线.
13.(广东省广州市2023届高三二模)如图,在直三棱柱中,,点D是的中点,点E在上,平面.
(1)求证:平面平面;
(2)当三棱锥的体积最大时,求直线与平面所成角的正弦值.
【详解】(1)取中点,连接、,如图所示:
,点是的中点,
,
又是的中点,
,
又在直三棱柱中,有, 平面
,
平面,
平面,且面,平面平面,
,
平面,且平面,
,
又,且、平面,
平面,
又,
平面,
平面,
面平面.
(2)由(1)知平面,则,
设,则,,,
,
由基本不等式知,当且仅当时等号成立,即三棱锥的体积最大,
此时,
以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示:
则有,,,,,
,,,
设平面的一个法向量为,
则有,取,解得,
设直线与平面所成的角为,
,
故直线与平面所成角的正弦值为.
14.(广东省深圳市2023届高三二模)在三棱柱中,,,.
(1)证明:;
(2)若,,求平面与平面夹角的余弦值.
【详解】(1)设的中点为,连接
因为,所以,又因为且,
所以, 因为平面,且,
所以平面 ,因为 平面 ,
所以,又因为是的中点,
所以 .
(2)在中,由余弦定理求得则
因为,所以,解得,
在和中,可知.
在中,,因此.
由(1)知,,且平面,且,
所以平面 .
以 所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,
则.
所以,
设平面的法向量为,
则 ,
,
令,得.
设平面的法向量为,
则 ,
即
令,得 ,
设平面与平面夹角为,则,
所以平面与平面夹角的余弦值为.
15.(湖北省武汉市2023届高三下学期四月调研)如图,在边长为4的正三角形ABC中,E,F分别为边AB,AC的中点.将沿EF翻折至,得到四棱锥,P为的中点.
(1)证明:平面;
(2)若平面平面EFCB,求直线与平面BFP所成的角的正弦值.
【详解】(1)取的中点Q,连接,
则有,且,又,且,
故,且,
则四边形EFPQ为平行四边形,则,
又平面,平面,故平面.
(2)取EF中点O,BC中点G,由平面平面EFCB,且交线为EF,故平面EFCB,此时,两两垂直,以O为原点,所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
则可得,,,,
由P为中点,故,
则,,,
设平面BFP的法向量,
则,即,故取,
故所求角的正弦值为,
所以直线与平面BFP所成的角的正弦值为.
16.(山东省济南市2023届高三二模)如图,在正三棱台ABC—DEF中,M,N分别为棱AB,BC的中点,.
(1)证明:四边形MNFD为矩形;
(2)若四边形MNFD为正方形,求直线BC与平面ACFD所成角的正弦值.
【详解】(1)延长,则相交于一点,连接,
M,N分别为棱的中点,所以 且,
由于,所以又,
所以,所以四边形为平行四边形,
在三棱锥中,,所以,
进而得 ,又 ,因此
所以 ,故四边形为矩形
(2)由可知分别是的中点,
所以,
又四边形为正方形,所以,所以,
由于三棱锥为正三棱锥,且,因此三棱锥为正四面体,
因此直线BC与平面ACFD所成的角即为直线与平面所成角,
取的中心为,连接,则平面,所以为直线与平面所成角,
设四面体的棱长为 ,在中,由正弦定理可得, ,
在中,,
故直线BC与平面ACFD所成的角的正弦值为
17.(浙江省杭州市2023届高三下学期教学质量检测(二模))在三棱锥中,底面为等腰直角三角形,.
(1)求证:;
(2)若,求平面与平面夹角的余弦值.
【详解】(1)
证明:取的中点为E,连结,
∵,∴,
在和中,
∴,∴,
∵的中点为E,∴,
∵,∴面,
∵面,∴
(2)
过S作面,垂足为D,连接,∴
∵,平面
∴,同理,
∵底面为等腰直角三角形,,
∴四边形为正方形且边长为2.
以D为原点,分别为x,y,z轴建立空间直角坐标系,则
,
设平面的法向量,则,解得,
取,则,∴,
设平面的法向量,则,解得,
取,则,∴,
设平面与平面夹角为
故平面与平面夹角的余弦值为.单选
5.(广东省广州市2023届高三二模)木升在古代多用来盛装粮食作物,是农家必备的用具,如图为一升制木升,某同学制作了一个高为40的正四棱台木升模型,已知该正四棱台的所有顶点都在一个半径为50的球O的球面上,且一个底而的中心与球O的球心重合,则该正四棱台的侧面与底面所成二面角的正弦值为( )
B. C. D.
4.(广东省深圳市2023届高三二模)设表面积相等的正方体、正四面体和球的体积分别为、和,则( )
A. B. C. D.
6.(山东省济南市2023届高三二模)17世纪30年代,意大利数学家卡瓦列利在《不可分量几何学》一书中介绍了利用平面图形旋转计算球体体积的方法.如图,是一个半圆,圆心为O,ABCD是半圆的外切矩形.以直线OE为轴将该平面图形旋转一周,记△OCD,阴影部分,半圆所形成的几何体的体积分别为,,,则下列说法正确的是( )
A. B. C. D.
7.(浙江省杭州市2023届高三下学期教学质量检测(二模))如图,点、、、、为正方体的顶点或所在棱的中点,则下列各图中,不满足直线平面的是( )
A. B.
C. D.
多选
10.(广东省佛山市2023届高三二模)四面体中,,,,,,平面与平面的夹角为,则的值可能为( )
A. B. C. D.
12.(广东省广州市2023届高三二模)已知正四面体的棱长为2,点,分别为和的重心,为线段上一点,则下列结论正确的是( )
A.若取得最小值,则
B.若,则平面
C.若平面,则三棱锥外接球的表面积为
D.直线到平面的距离为
11.(广东省深圳市2023届高三二模)如图,在矩形AEFC中,,EF=4,B为EF中点,现分别沿AB、BC将△ABE、△BCF翻折,使点E、F重合,记为点P,翻折后得到三棱锥P-ABC,则( )
A.三棱锥的体积为 B.直线PA与直线BC所成角的余弦值为
C.直线PA与平面PBC所成角的正弦值为 D.三棱锥外接球的半径为
12.(湖北省武汉市2023届高三下学期四月调研)三棱锥中,,,,直线PA与平面ABC所成的角为,直线PB与平面ABC所成的角为,则下列说法中正确的有( )
A.三棱锥体积的最小值为
B.三棱锥体积的最大值为
C.直线PC与平面ABC所成的角取到最小值时,二面角的平面角为锐角
D.直线PC与平面ABC所成的角取到最小值时,二面角的平面角为钝角
11.(山东省济南市2023届高三二模)如图所示,在菱形中,,分别是线段的中点,将沿直线折起得到三棱锥,则在该三棱锥中,下列说法正确的是( )
A.直线平面
B.直线与是异面直线
C.直线与可能垂直
D.若,则二面角的大小为
12.(浙江省杭州市2023届高三下学期教学质量检测(二模))如图圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,,为圆柱上下底面的圆心,O为球心,EF为底面圆的一条直径,若球的半径,则( )
A.球与圆柱的体积之比为
B.四面体CDEF的体积的取值范围为
C.平面DEF截得球的截面面积最小值为
D.若P为球面和圆柱侧面的交线上一点,则的取值范围为
填空
14.(湖北省武汉市2023届高三下学期四月调研)半正多面体亦称“阿基米德体”,是以边数不全相同的正多边形为面的多面体.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它的各棱长都相等,其中八个面为正三角形,六个面为正方形,称这样的半正多面体为二十四等边体.
则得到的二十四等边体与原正方体的体积之比为______.
解答
20.(广东省佛山市2023届高三二模)中国正在由“制造大国”向“制造强国”迈进,企业不仅仅需要大批技术过硬的技术工人,更需要努力培育工人们执着专注、精益求精、一丝不苟、追求卓越的工匠精神,这是传承工艺、革新技术的重要基石.如图所示的一块木料中,是正方形,平面,,点,是,的中点.
(1)若要经过点和棱将木料锯开,在木料表面应该怎样画线,请说明理由并计算截面周长;
(2)若要经过点B,E,F将木料锯开,在木料表面应该怎样画线,请说明理由.
20.(广东省广州市2023届高三二模)如图,在直三棱柱中,,点D是的中点,点E在上,平面.
(1)求证:平面平面;
(2)当三棱锥的体积最大时,求直线与平面所成角的正弦值.
19.(广东省深圳市2023届高三二模)在三棱柱中,,,.
(1)证明:;
(2)若,,求平面与平面夹角的余弦值.
19.(湖北省武汉市2023届高三下学期四月调研)如图,在边长为4的正三角形ABC中,E,F分别为边AB,AC的中点.将沿EF翻折至,得到四棱锥,P为的中点.
(1)证明:平面;
(2)若平面平面EFCB,求直线与平面BFP所成的角的正弦值.
19.(山东省济南市2023届高三二模)如图,在正三棱台ABC—DEF中,M,N分别为棱AB,BC的中点,.
(1)证明:四边形MNFD为矩形;
(2)若四边形MNFD为正方形,求直线BC与平面ACFD所成角的正弦值.
19.(浙江省杭州市2023届高三下学期教学质量检测(二模))在三棱锥中,底面为等腰直角三角形,.
(1)求证:;
(2)若,求平面与平面夹角的余弦值.