中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
专题06 函数的应用
一、单选题
1.(2023·上海静安·统考二模)摩天轮常被当作一个城市的地标性建筑,如静安大悦城的“Sky Ring”摩天轮是上海首个悬臂式屋顶摩天轮.摩天轮最高点离地面高度106米,转盘直径56米,轮上设置30个极具时尚感的4人轿舱,拥有360度的绝佳视野.游客从离楼顶屋面最近的平台位置进入轿舱,开启后按逆时针匀速旋转t分钟后,游客距离地面的高度为h米,.若在,时刻,游客距离地面的高度相等,则的最小值为( )
A.6 B.12 C.18 D.24
2.(2023·江苏南通·三模)函数,若方程只有三个根,且,则的取值范围是( ).
A. B. C. D.
3.(2023·江西南昌·南昌县莲塘第一中学校联考二模)为了预防某种病毒,某学校需要通过喷洒药物对教室进行全面消毒.出于对学生身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,学生方可进入教室.已知从喷洒药物开始,教室内部的药物浓度y(毫克/立方米)与时间t(分钟)之间的函数关系为,函数的图像如图所示.如果早上7:30就有学生进入教室,那么开始喷洒药物的时间最迟是( )
A.7:00 B.6:40 C.6:30 D.6:00
4.(2023·四川攀枝花·统考三模)“绿水青山就是金山银山”理念已经成为全党全社会的共识和行动,工业废水中的某稀有金属对环境有污染,甲企业经过数年攻关,成功开发出了针对该金属的“废水微循环处理利用技术”,废水每通过一次该技术处理,可回收20%的金属.若当废水中该金属含量低于最原始的5%时,至少需要循环使用该技术的次数为( )(参考数据:)
A.12 B.13 C.14 D.15
5.(2023·福建福州·统考模拟预测)为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic,模型:,已知当贷款大的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为( )(精确到0.01万元,参考数据:,)
A.4.65万元 B.5.63万元 C.6.40万元 D.10.00万元
6.(2023·山西阳泉·统考三模)函数在区间存在零点.则实数m的取值范围是( )
A. B. C. D.
7.(2023·广西玉林·博白县中学校考模拟预测)已知函数是奇函数,且,若是函数的一个零点,则( )
A. B.0 C.2 D.4
8.(2023·河北·统考模拟预测)已知函数,若恰有两个零点,则的取值范围为( )
A. B.
C. D.
9.(2023·湖北·模拟预测)已知函数有且仅有3个零点,若,则( )
A. B. C. D.
10.(2023·浙江·统考二模)绍兴某乡村要修建一条100米长的水渠,水渠的过水横断面为底角为120°的等腰梯形(如图)水渠底面与侧面的修建造价均为每平方米100元,为了提高水渠的过水率,要使过水横断面的面积尽可能大,现有资金3万元,当过水横断面面积最大时,水果的深度(即梯形的高)约为( )(参考数据:)
A.0.58米 B.0.87米 C.1.17米 D.1.73米
11.(2023·浙江·统考二模)已知函数,若将函数的图象向左平移个单位长度后得到函数的图象,若关于的方程在上有且仅有两个不相等的实根,则实数的取值范围是( )
A. B. C. D.
12.(2023·云南昆明·昆明一中校考模拟预测)若,则( )
A. B.
C. D.
13.(2023·贵州遵义·校考模拟预测)“函数存在零点”的一个必要不充分条件为( )
A. B.
C.m>2 D.
14.(2023·新疆乌鲁木齐·统考二模)已知x,,且,则( )
A.0 B. C.1 D.
15.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数满足:①定义域为;②;③有且仅有两个不同的零点,,则的取值范围是( )
A. B. C. D.
16.(2023·山西运城·统考二模)昆虫信息素是昆虫用来表示聚集、觅食、交配、警戒等信息的化学物质,是昆虫之间起化学通讯作用的化合物,是昆虫交流的化学分子语言,包括利它素、利己素、协同素、集合信息素、追踪信息素、告警信息素、疏散信息素、性信息素等.人工合成的昆虫信息素在生产中有较多的应用,尤其在农业生产中的病虫害的预报和防治中较多使用.研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足,其中k,a为非零常数.已知释放信息素1秒后,在距释放处2米的地方测得信息素浓度为m;若释放信息素4秒后,距释放处b米的位置,信息素浓度为,则b=( )
A.3 B.4 C.5 D.6
17.(2023·陕西西安·西安一中校联考模拟预测)将函数图象所有点的纵坐标伸长到原来的倍,并沿x轴向左平移个单位长度,再向上平移2个单位长度得到的图象.若的图象关于点对称,则函数在上零点的个数是( ).
A.1 B.2 C.3 D.4
18.(2023·河南·校联考模拟预测)已知函数,则下列说法正确的是( )
A.函数的最小正周期为
B.是函数图象的一个对称中心
C.将函数的图象向右平移个单位后得到一个偶函数
D.函数在上有7个零点
19.(2023·重庆·统考模拟预测)已知函数,,若方程恰有三个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
20.(2023·云南曲靖·统考模拟预测)已知函数的导函数为 ,且对任意的实数都有 (是自然对数的底数),且,若关于的方程恰有两个实数根,则实数的取值范围是( )
A. B. C. D.
21.(2023·上海长宁·统考二模)设各项均为实数的等差数列和的前n项和分别为和,对于方程①,②,③.下列判断正确的是( )
A.若①有实根,②有实根,则③有实根
B.若①有实根,②无实根,则③有实根
C.若①无实根,②有实根,则③无实根
D.若①无实根,②无实根,则③无实根
22.(2023·天津滨海新·天津市滨海新区塘沽第一中学校考模拟预测)已知函数,则下列说法中正确的是( )
①函数有两个极值点;
②若关于的方程恰有1个解,则;
③函数的图象与直线()有且仅有一个交点;
④若,且,则无最值.
A.①② B.①③④ C.②③ D.①③
23.(2023·四川资阳·统考模拟预测)已知函数,函数恰有5个零点,则m的取值范围是( )
A. B. C. D.
24.(2023·全国·学军中学校联考二模)已知函数(为自然对数的底数),则函数的零点个数为( )
A.3 B.5 C.7 D.9
25.(2023·北京朝阳·二模)已知函数是上的奇函数,当时,.若关于x的方程有且仅有两个不相等的实数解则实数m的取值范围是( )
A. B. C. D.
26.(2023·广西·统考模拟预测)已知函数恰有两个零点,则的取值范围为( )
A. B. C. D.
27.(2023·辽宁朝阳·朝阳市第一高级中学校考模拟预测)已知函数的图象与的图象相交于,两点,且,若,则( )
A. B. C. D.
二、多选题
28.(2023·浙江绍兴·统考模拟预测)预测人口的变化趋势有多种方法,“直接推算法”使用的公式是,其中为预测期人口数,为初期人口数,为预测期内人口年增长率,为预测期间隔年数,则( )
A.当,则这期间人口数呈下降趋势
B.当,则这期间人口数呈摆动变化
C.当时,的最小值为3
D.当时,的最小值为3
29.(2023·广东深圳·统考二模)已知是定义在闭区间上的偶函数,且在y轴右侧的图象是函数图象的一部分(如图所示),则( )
A.的定义域为
B.当时,取得最大值
C.当时,的单调递增区间为
D.当时,有且只有两个零点和
30.(2023·浙江绍兴·统考模拟预测)已知函数,下列说法正确的有( )
A.若与图象至多有2个公共点
B.若与图象至少有2个公共点
C.若与图象至多有2个公共点
D.若与图象至少有2个公共点
31.(2023·山东菏泽·统考二模)已知,分别是函数和的零点,则( )
A. B. C.
D.
32.(2023·辽宁大连·统考三模)甲乙两队进行比赛,若双方实力随时间的变化遵循兰彻斯特模型:
其中正实数分别为甲 乙两方初始实力,为比赛时间;分别为甲 乙两方时刻的实力;正实数分别为甲对乙 乙对甲的比赛效果系数.规定当甲 乙两方任何一方实力为0时比赛结束,另一方获得比赛胜利,并记比赛持续时长为.则下列结论正确的是( )
A.若且,则
B.若且,则
C.若,则甲比赛胜利
D.若,则甲比赛胜利
33.(2023·湖南衡阳·校联考模拟预测)已知函数,则( )
A.在上最大值为2
B.有两个零点
C.的图像关于点对称
D.存在实数,使的图像关于原点对称
34.(2023·河北邯郸·统考二模)已知函数,若存在满足,,下列结论正确的是( )
A.若,则 B.
C. D.
三、解答题
35.(2023·江西鹰潭·二模)某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近6个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(单位:元/件) 4 5 6 7 8 9
月销售量(万件) 89 83 82 79 74 67
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)已知该商品的月销售额为(单位:万元),利用(1)中的计算正确的结果回答问题:当月销售单价为何值时,啇品的月销值额预报值最大,并求出其最大值.
36.(2023·浙江温州·统考三模)已知函数在区间上恰有3个零点,其中为正整数.
(1)求函数的解析式;
(2)将函数的图象向左平移个单位得到函数的图象,求函数的单调区间.
37.(2023·上海奉贤·统考二模)某小区有块绿地,绿地的平面图大致如下图所示,并铺设了部分人行通道.
为了简单起见,现作如下假设:
假设1:绿地是由线段,,,和弧围成的,其中是以点为圆心,圆心角为的扇形的弧,见图1;
假设2:线段,,,所在的路行人是可通行的,圆弧暂时未修路;
假设3:路的宽度在这里暂时不考虑;
假设4:路用线段或圆弧表示,休息亭用点表示.
图1-图3中的相关边、角满足以下条件:
直线与的交点是,,.米.
小区物业根据居民需求,决定在绿地修建一个休息亭.根据不同的设计方案解决相应问题,结果精确到米.
(1)假设休息亭建在弧的中点,记为,沿和线段修路,如图2所示.求的长;
(2)假设休息亭建在弧上的某个位置,记为,作交于,作交于.沿、线段和线段修路,如图3所示.求修建的总路长的最小值;
(3)请你对(1)和(2)涉及到的两种设计方案做个简明扼要的评价.
38.(2023·上海长宁·统考二模)某地新能源汽车保有量符合阻沛型增长模型,其中为自统计之日起,经过t年后该地新能源汽车保有量、和r为增长系数、M为饱和量.
下表是该地近6年年底的新能源汽车的保有量(万辆)的统计数据:
年份 2018 2019 2020 2021 2022
t 0 1 2 3 4
保有量 9.6 12.9 17.1 23.2 31.4
假设该地新能源汽车饱和量万辆.
(1)若,假设2018年数据满足公式,计算的值(精确到0.01)并估算2023年年底该地新能源汽车保有量(精确到0.1万辆);
(2)设,则与t线性相关.请依据以上表格中相关数据,利用线性回归分析确定和r的值(精确到0.01).
附:线性回归方程中回归系数计算公式如下:.
39.(2023·四川宜宾·统考三模)已知函数.
(1)讨论函数的极值点个数;
(2)若,的最小值是,求实数m的所有可能值.
40.(2023·江苏·统考二模)已知函数,.
(1)若,求函数的单调区间;
(2)若有且只有2个不同的零点,求的取值范围.
41.(2023·浙江·统考二模)已知函数,.
(1)求证:;
(2)若函数有三个不同的零点,,.
(ⅰ)求a的取值范围;
(ⅱ)求证:.
42.(2023·广东佛山·统考二模)已知函数,其中.
(1)若有两个零点,求的取值范围;
(2)若,求的取值范围.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
专题06 函数的应用
一、单选题
1.(2023·上海静安·统考二模)摩天轮常被当作一个城市的地标性建筑,如静安大悦城的“Sky Ring”摩天轮是上海首个悬臂式屋顶摩天轮.摩天轮最高点离地面高度106米,转盘直径56米,轮上设置30个极具时尚感的4人轿舱,拥有360度的绝佳视野.游客从离楼顶屋面最近的平台位置进入轿舱,开启后按逆时针匀速旋转t分钟后,游客距离地面的高度为h米,.若在,时刻,游客距离地面的高度相等,则的最小值为( )
A.6 B.12 C.18 D.24
【答案】B
【分析】利用正弦型函数的性质分析即可.
【详解】由可知,
当时,,
当时,,
若在,时刻,游客距离地面的高度相等,
则由对称性可知此时的最小值为.
故选:B.
2.(2023·江苏南通·三模)函数,若方程只有三个根,且,则的取值范围是( ).
A. B. C. D.
【答案】D
【分析】利用已知条件,先讨论当时情况成立即得方程一根,然后讨论时,找出函数的奇偶性,利用函数的奇偶性来确定其他两根的关系,即可判断的取值范围.
【详解】由,,
所以,
①当时方程成立
②若时,化为:
,
令,
由定义域关于原点对称,
且,
所以为偶函数,图像关于轴对称,
所以与的两个交点对应的横坐标关于轴对称,
即方程的另外两根一定一正一负,
又,
所以,且,
所以,
故选:D.
3.(2023·江西南昌·南昌县莲塘第一中学校联考二模)为了预防某种病毒,某学校需要通过喷洒药物对教室进行全面消毒.出于对学生身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,学生方可进入教室.已知从喷洒药物开始,教室内部的药物浓度y(毫克/立方米)与时间t(分钟)之间的函数关系为,函数的图像如图所示.如果早上7:30就有学生进入教室,那么开始喷洒药物的时间最迟是( )
A.7:00 B.6:40 C.6:30 D.6:00
【答案】A
【分析】函数的图像过点,代入函数的解析式求得未知系数a,解函数不等式即可.
【详解】根据函数的图像,可得函数的图像过点,
由函数图像连续,代入函数的解析式,可得,解得,
所以,
令,可得或,
解得或.
所以如果7:30学生进入教室,那么开始喷洒药物的时间最迟是7:00.
故选:A.
4.(2023·四川攀枝花·统考三模)“绿水青山就是金山银山”理念已经成为全党全社会的共识和行动,工业废水中的某稀有金属对环境有污染,甲企业经过数年攻关,成功开发出了针对该金属的“废水微循环处理利用技术”,废水每通过一次该技术处理,可回收20%的金属.若当废水中该金属含量低于最原始的5%时,至少需要循环使用该技术的次数为( )(参考数据:)
A.12 B.13 C.14 D.15
【答案】C
【分析】利用条件建立不等式,再转化成,再利用对数的运算法则和条件即可求出结果.
【详解】设至少需要循环使用该技术的次数为,则,所以,故取14.
故选:C.
5.(2023·福建福州·统考模拟预测)为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic,模型:,已知当贷款大的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为( )(精确到0.01万元,参考数据:,)
A.4.65万元 B.5.63万元 C.6.40万元 D.10.00万元
【答案】A
【分析】先根据题中数据代入计算函数中参数的值,然后计算时的值即可.
【详解】由题意,即,得,所以.
令,
得,
得,
得
得.
故选:A.
6.(2023·山西阳泉·统考三模)函数在区间存在零点.则实数m的取值范围是( )
A. B. C. D.
【答案】B
【分析】利用函数的单调性的性质及函数零点的存在性定理即可求解.
【详解】由在上单调递增,在上单调递增,得函数在区间上单调递增,
因为函数在区间存在零点,
所以,即,解得,
所以实数m的取值范围是.
故选:B.
7.(2023·广西玉林·博白县中学校考模拟预测)已知函数是奇函数,且,若是函数的一个零点,则( )
A. B.0 C.2 D.4
【答案】D
【分析】根据给定条件,利用奇函数、函数零点的定义,列式求解作答.
【详解】因为是函数的一个零点,则,于是,即,
而函数是奇函数,则有,
所以.
故选:D
8.(2023·河北·统考模拟预测)已知函数,若恰有两个零点,则的取值范围为( )
A. B.
C. D.
【答案】D
【分析】将问题转化为恰有两个实数根,求导确定函数的单调性,进而画出函数的图象,结合函数图象即可确定的取值.
【详解】恰有两个零点,即恰有两个实数根,由于,所以恰有两个实数根等价于恰有两个实数根,
令,则,
当时,,故当此时单调递增,当,此时单调递减,故当时,取极小值也是最小值,且当时,,
当时,,且单调递增,
在直角坐标系中画出的大致图象如图:
要使有两个交点,则,
故选:D
9.(2023·湖北·模拟预测)已知函数有且仅有3个零点,若,则( )
A. B. C. D.
【答案】C
【分析】当时,解出一根,由得,当时,还有两根,则此时方程为二次方程,根据题意建立不等式解出的取值范围,再根据其他条件即可得结论.
【详解】当时,令,解得,即;
当时,方程有两个不等负实根,,
所以,解得,
当时,,又,则.
所以.
故选:C.
10.(2023·浙江·统考二模)绍兴某乡村要修建一条100米长的水渠,水渠的过水横断面为底角为120°的等腰梯形(如图)水渠底面与侧面的修建造价均为每平方米100元,为了提高水渠的过水率,要使过水横断面的面积尽可能大,现有资金3万元,当过水横断面面积最大时,水果的深度(即梯形的高)约为( )(参考数据:)
A.0.58米 B.0.87米 C.1.17米 D.1.73米
【答案】B
【分析】如图设横截面为等腰梯形,于,求出资金3万元都用完时,设,再根据梯形的面积公式结合二次函数的性质即可得解.
【详解】如图设横截面为等腰梯形,于,,
要使水横断面面积最大,则此时资金3万元都用完,
则,解得米,
设,则,故,且,
梯形的面积,
当时,,
此时,
即当过水横断面面积最大时,水果的深度(即梯形的高)约为0.87米.
故选:B.
11.(2023·浙江·统考二模)已知函数,若将函数的图象向左平移个单位长度后得到函数的图象,若关于的方程在上有且仅有两个不相等的实根,则实数的取值范围是( )
A. B. C. D.
【答案】B
【分析】根据三角函数图象平移的原则得的表达式,根据的范围得出的范围,结合余弦函数的性质列出不等式即可得结果.
【详解】将函数向左平移个单位长度后得到函数,
即,
∵,∴,
∵在上有且仅有两个不相等的实根,
∴,解得,
即实数的取值范围是,
故选:B.
12.(2023·云南昆明·昆明一中校考模拟预测)若,则( )
A. B.
C. D.
【答案】D
【分析】由选项AB构造函数,利用导数研究函数的性质,结合图形可知无法判断与的大小;由选项CD构造函数,利用导数讨论函数的单调性,即可求解.
【详解】由选项AB可知,构造函数,
则,作出函数和在上的图象,如图,
由图象知函数在(0,1)上有一个零点,
则当时,单调递减,当时,单调递增,
而,所以无法判断与的大小,故AB错误;
由选项CD可知,构造函数,得,
当时,,则函数在上单调递增,
有,即,所以,故D正确.
故选:D.
13.(2023·贵州遵义·校考模拟预测)“函数存在零点”的一个必要不充分条件为( )
A. B.
C.m>2 D.
【答案】A
【分析】令可得,再分析的奇偶性与单调性,结合的最值判断即可.
【详解】令化简可得,令,易得函数为偶函数,且在上单调递减,在上单调递增,又,且,故有零点则,所求范围要比此大,选项中仅A符合.
故选:A.
14.(2023·新疆乌鲁木齐·统考二模)已知x,,且,则( )
A.0 B. C.1 D.
【答案】A
【分析】抽象为一个函数的两个函数值,分析函数的性质,利用函数值的关系,求出自变量的关系,进而求解.
【详解】由已知,,
所以,,
设,,则,
函数的定义域为,定义域关于原点对称,
又,
所以函数,为奇函数,
当时,函数都为增函数,
所以函数在上单调递增,
由函数,为奇函数,
可得函数在上单调递增,
所以,故,
所以.
故选:A.
15.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数满足:①定义域为;②;③有且仅有两个不同的零点,,则的取值范围是( )
A. B. C. D.
【答案】B
【分析】由题意可转化为有且仅有两个不同的零点,,对求导,结合的单调性可知,由此可知另一根为,由的范围可求出的范围,即可求出的取值范围.
【详解】函数有且仅有两个不同的零点,,
因为,令,即有且仅有两个不同的零点,,
得或,
若,令,可得或;令,可得,
所以在上单调递增,在上单调递减,
同理若,在上单调递增,在上单调递减,
因为,,
要使有且仅有两个不同的零点,,则,
而,则,因为,
则,则,
则有一根是确定的为,又因为,
所以的另一根为,
所以,因为,,
.
故选:B.
16.(2023·山西运城·统考二模)昆虫信息素是昆虫用来表示聚集、觅食、交配、警戒等信息的化学物质,是昆虫之间起化学通讯作用的化合物,是昆虫交流的化学分子语言,包括利它素、利己素、协同素、集合信息素、追踪信息素、告警信息素、疏散信息素、性信息素等.人工合成的昆虫信息素在生产中有较多的应用,尤其在农业生产中的病虫害的预报和防治中较多使用.研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足,其中k,a为非零常数.已知释放信息素1秒后,在距释放处2米的地方测得信息素浓度为m;若释放信息素4秒后,距释放处b米的位置,信息素浓度为,则b=( )
A.3 B.4 C.5 D.6
【答案】B
【分析】根据已知的浓度解析式,代入变量,结合对数的运算,化简求值.
【详解】由题意,,
所以),
即.又,所以.
因为,所以.
故选:B.
17.(2023·陕西西安·西安一中校联考模拟预测)将函数图象所有点的纵坐标伸长到原来的倍,并沿x轴向左平移个单位长度,再向上平移2个单位长度得到的图象.若的图象关于点对称,则函数在上零点的个数是( ).
A.1 B.2 C.3 D.4
【答案】B
【分析】根据函数图象变换规律可得,然后根据三角函数的性质可得,再利用正弦函数的图象和性质结合条件即得.
【详解】将图象所有点的纵坐标伸长到原来的倍,得到的图象,
继续沿x轴向左平移个单位长度,再向上平移2个单位长度得到的图象,
∵的图象关于点对称,得,.
又∵,∴,∴.
令,当时,有,
由,可得,,
结合函数的图象可得,在上只有2个解,
即函数在上零点的个数是2.
故选:B.
18.(2023·河南·校联考模拟预测)已知函数,则下列说法正确的是( )
A.函数的最小正周期为
B.是函数图象的一个对称中心
C.将函数的图象向右平移个单位后得到一个偶函数
D.函数在上有7个零点
【答案】D
【分析】利用三角函数的降幂公式及辅助角公式,结合三角函数的性质、三角函数的平移变换及函数的零点的定义即可求解.
【详解】依题意,
故,故A错误;
因为,故不是函数图象的一个对称中心,故B错误;
将函数的图象向右平移个单位后,得到,显然该函数不是偶函数,故C错误;
令,即,解得,或,即或,又因为,
,,,,,,,所以函数在上有7个零点,故D正确.
故选:D.
19.(2023·重庆·统考模拟预测)已知函数,,若方程恰有三个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
【答案】A
【分析】方程恰有三个不相等的实数根可转化为与的图象的交点有3个,利用导数求出切线斜率,根据数形结合求解.
【详解】作出与的图象,如图,
当时,设与相切于点,
则,解得,所以,
由图象可知,当时,与有2个交点,与有1个交点,即与有3个交点.;
当时,设与相切于点,
由可知,,
解得或(舍去),此时,而,
由图象知,当时,与有3个交点.
综上,或时图象有3个交点,即方程恰有三个不相等的实数根.
故选:A
20.(2023·云南曲靖·统考模拟预测)已知函数的导函数为 ,且对任意的实数都有 (是自然对数的底数),且,若关于的方程恰有两个实数根,则实数的取值范围是( )
A. B. C. D.
【答案】B
【分析】先求出 得解析式,求导,求出函数的单调区间,作图,根据图像求解.
【详解】由题意可得, ,
令 ,则 ,故;
又,所以,故 ,所以 ,
当或时, ,函数分别单调递减;当时, ,函数单调递增,
故当时,函数取得极大值 ,当时,函数取得极小值,
时 趋于时 趋于0,故轴是图像的水平渐近线,其图像如图所示,
结合函数的图像,要使关于的方程恰有两个实数根,
实数的取值范围是 ;
故选:B.
21.(2023·上海长宁·统考二模)设各项均为实数的等差数列和的前n项和分别为和,对于方程①,②,③.下列判断正确的是( )
A.若①有实根,②有实根,则③有实根
B.若①有实根,②无实根,则③有实根
C.若①无实根,②有实根,则③无实根
D.若①无实根,②无实根,则③无实根
【答案】B
【分析】若①有实根,得到,设方程与方程的判别式分别为和,得到,结合举反例可以判断选项AB;通过举反例可以判断选项CD.
【详解】若①有实根,由题意得:,
其中,,
代入上式得,
设方程与方程的判别式分别为和,
则等号成立的条件是.
又,
如果②有实根,则,则或者,所以③有实根或者没有实根,如 满足,,但是,所以③没有实根,所以选项A错误;
如果②没实根,则,则,所以③有实根,所以选项B正确;
若①无实根,则,②有实根,则,
设,所以,,
此时,则③有实根,所以选项C错误;
若①无实根,则,②无实根,则,
设,所以,,
此时,则③有实根,所以选项D错误.
故选:B
【点睛】关键点睛:解答本题的关键是排除法的灵活运用,要证明一个命题是假命题,证明比较困难,只需举一个反例即可.
22.(2023·天津滨海新·天津市滨海新区塘沽第一中学校考模拟预测)已知函数,则下列说法中正确的是( )
①函数有两个极值点;
②若关于的方程恰有1个解,则;
③函数的图象与直线()有且仅有一个交点;
④若,且,则无最值.
A.①② B.①③④ C.②③ D.①③
【答案】D
【分析】求出分段函数的解析式以及各段导函数,得出函数的单调区间,即可得出①;作出函数图象,即可判断②;根据①求得的导函数,可推得,有恒成立,即可得出③;作图,根据图象得出与有3个交点时,的范围.然后用表示出,即可得出,构造函数,通过导函数研究函数的单调性,得出函数的最值,即可判断④.
【详解】对于①,当时,,恒成立,
所以在上单调递增;
当时,,恒成立,
所以,在上单调递减;
当时,,恒成立,
所以,在上单调递减.
综上所述,在上单调递减,在上单调递增,在上单调递减.
所以,在处取得极小值,在处取得极大值,故①正确;
对于②,作出的图象如下图1
由图1可知,若关于的方程恰有1个解,则或,故②错误;
对于③,由①知,当时,,
因为,所以,所以,当且仅当;
当时,;
当时,,
因为,所以,所以,当且仅当.
综上所述,,有恒成立.
又直线可化为,斜率为,
所以函数的图象与直线()有且仅有一个交点,故③正确;
对于④,
由图2可知,当时,函数的图象与有3个不同的交点.
则有,所以,
所以,.
令,,
则.
令,则在上恒成立,
所以,在上单调递增.
又,,
根据零点存在定理可知,,使得,
且当时,,
所以,所以在上单调递减;
当时,,
所以,所以在上单调递增.
所以,在处取得唯一极小值,也是最小值,无最大值,故④错误.
综上所述,①③正确.
故选:D.
【点睛】方法点睛:遇到条件时,常设,然后根据图象得出的范围.根据解析式,用表示出,将所求表达式表示为的函数,根据导函数研究函数的单调性、极值、最值等.
23.(2023·四川资阳·统考模拟预测)已知函数,函数恰有5个零点,则m的取值范围是( )
A. B. C. D.
【答案】C
【分析】由题意可先做出函数的大致图象,利用数形结合和分类讨论,即可确定m的取值范围.
【详解】当时,.由,得,由,得,
则在上单调递减,在上单调递增,故的大致图象如图所示.
设,则,由图可知当时,有且只有1个实根,
则最多有3个不同的实根,不符合题意.
当时,的解是,.有2个不同的实根,有2个不同的实根,
则有4个不同的实根,不符合题意.
当时,有3个不同的实根,,,且,,.
有2个不同的实根,有2个不同的实根,有3个不同的实根,
则有7个不同的实根,不符合题意.
当时,有2个不同的实根,,且,.
有2个不同的实根,有3个不同的实根,
则有5个不同的实根,符合题意.
当时,有2个不同的实根,,且,,
有2个不同的实根,,有2个不同的实根,则有4个不同的实根,不符合题意.
当时,有且只有1个实根,则最多有3个不同的实根,不符合题意,
综上,m的取值范围是.
故选:C.
【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m的讨论应有,,,,这几种情况,也是解题关键.
24.(2023·全国·学军中学校联考二模)已知函数(为自然对数的底数),则函数的零点个数为( )
A.3 B.5 C.7 D.9
【答案】C
【分析】作出函数的图象,可设,可得,判断与交点个数,进而将的零点个数问题转化为函数的图象交点个数问题,数形结合,可得答案.
【详解】设,令可得:,
对于,,故在处切线的斜率值为,
设与相切于点,
切线斜率,则切线方程为:,
即,解得:;
由于,故作出与图象如下图所示,
与有四个不同交点,
即与有四个不同交点,
设三个交点为,由图象可知:,
作出函数的图象如图,
由此可知与无交点,与有三个不同交点,与各有两个不同交点,
的零点个数为7个,
故选:C
【点睛】方法点睛:解决此类复合函数的零点问题,常常采用换元的方法,将零点问题转化为函数图象的交点问题,数形结合,即可解决.
25.(2023·北京朝阳·二模)已知函数是上的奇函数,当时,.若关于x的方程有且仅有两个不相等的实数解则实数m的取值范围是( )
A. B. C. D.
【答案】C
【分析】利用奇函数性质求分段函数解析式,根据指数函数性质画出函数图象,数形结合判断不同值域范围的函数值对应自变量的个数,再由有两个解,对应的解的个数确定范围,进而求m的范围.
【详解】由题设,若,则,
所以,值域为R,函数图象如下:
当时,只有一个与之对应;
当时,有两个对应自变量,
记为,则;
当时,有三个对应自变量且;
当时,有两个对应自变量,
记为,则;
当时,有一个与之对应;
令,则,要使有且仅有两个不相等的实数解,
若有三个解,则,此时有5个解,不满足;
若有两个解且,此时和各有一个解,
结合图象知,不存在这样的,故不存在对应的m;
若有一个解,则有两个解,此时,
所以对应的,
综上,.
故选:C.
26.(2023·广西·统考模拟预测)已知函数恰有两个零点,则的取值范围为( )
A. B. C. D.
【答案】D
【分析】由零点定义可得为函数一个零点,利用导数研究函数在,上的零点,由此确定的取值范围.
【详解】因为,
所以,所以为函数一个零点,
若,函数可化为,
则,
当时,,函数在上单调递减,又,
此时函数在上没有零点,
当时,,函数在上单调递增,又,
此时函数在上没有零点,
当时,令,可得,
当时,,函数在上单调递增,
当时,,函数在上单调递减,
又,所以当时,,,
又,所以函数在上存在一个零点,
若,函数可化为,
,
当时,,函数在上单调递减,又,
此时函数在上没有零点,
当时,,函数在上单调递减,
此时函数在上没有零点,
当时,令,可得,
当时,,函数在上单调递减,
当时,,函数在上单调递增,
又,所以当时,,,
又,所以函数在上存在一个零点,
综上可得当时,函数有两个零点,
当时,函数有一个零点,
当时,函数有两个零点,
当时,函数有一个零点,
所以的取值范围为.
故选:D.
【点睛】关键点点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.
27.(2023·辽宁朝阳·朝阳市第一高级中学校考模拟预测)已知函数的图象与的图象相交于,两点,且,若,则( )
A. B. C. D.
【答案】C
【分析】由题知或,进而分别讨论求解即可.
【详解】解:因为函数的图象与的图象相交于,两点,且,
所以方程有两个实数根,且,
所以,有两个实数根,且,
所以,或,
若,
则,
所以,,故,满足题意,
若,
则,
所以,,故,与矛盾,舍去.
综上,.
故选:C
【点睛】关键点点睛:本题解题的关键在于将函数图象交点个数问题转化为方程的根的个数问题,进而结合三次方程的根的关系讨论求解即可.
二、多选题
28.(2023·浙江绍兴·统考模拟预测)预测人口的变化趋势有多种方法,“直接推算法”使用的公式是,其中为预测期人口数,为初期人口数,为预测期内人口年增长率,为预测期间隔年数,则( )
A.当,则这期间人口数呈下降趋势
B.当,则这期间人口数呈摆动变化
C.当时,的最小值为3
D.当时,的最小值为3
【答案】AC
【分析】由指数函数的性质确定函数的增减性可判断A,B;分别代入和,解指数不等式可判断C,D.
【详解】,由指数函数的性质可知:是关于n的单调递减函数,
即人口数呈下降趋势,故A正确,B不正确;
,所以,所以,
,所以的最小值为3,故C正确;
,所以,所以,
,所以的最小值为2,故D不正确;
故选:AC.
29.(2023·广东深圳·统考二模)已知是定义在闭区间上的偶函数,且在y轴右侧的图象是函数图象的一部分(如图所示),则( )
A.的定义域为
B.当时,取得最大值
C.当时,的单调递增区间为
D.当时,有且只有两个零点和
【答案】BCD
【分析】先利用待定系数法求出,再根据原点右侧的第二个零点为,即可判断A;求出的值即可判断B;求出当时的减区间,结合函数为偶函数即可判断C;求出当时的零点,结合函数为偶函数即可判断D.
【详解】由图得,且位于增区间上,
所以,又因为,所以,
,
则,得,所以,
所以,
由图可知,原点右侧的第二个零点为,
所以的定义域为,故A错误;
当时,,
因为为最大值,则当时,取得最大值,故B正确;
当时,令,则,
又因为,
所以当时,的减区间为,
因为函数为偶函数,
所以当时,的单调递增区间为,故C正确;
当时,,令,
得或,则或,
因为函数为偶函数,
所以当时,有且只有两个零点和,故D正确.
故选:BCD.
30.(2023·浙江绍兴·统考模拟预测)已知函数,下列说法正确的有( )
A.若与图象至多有2个公共点
B.若与图象至少有2个公共点
C.若与图象至多有2个公共点
D.若与图象至少有2个公共点
【答案】ACD
【分析】对于选项AC,联立方程利用判别式判断该选项正确;对于选项B, 假设,可以判断该选项错误;对于选项D,说明有两个解即可判断该选项真假.
【详解】对于选项A. ,所以与图象至多有2个公共点,所以该选项正确;
对于选项B, 假设,则令,
所以或,所以.所以此时与图象只有1个公共点,所以该选项错误;
对于选项C,,令,所以,此时与图象至多有2个公共点,所以该选项正确;
对于选项D, ,令,假设 或,所以和是的两个解,所以与图象至少有2个公共点,所以该选项正确.
故选:ACD
31.(2023·山东菏泽·统考二模)已知,分别是函数和的零点,则( )
A. B. C.
D.
【答案】BCD
【分析】利用函数与方程思想,得到两根满足的方程关系,然后根据结构构造函数,求导,研究单调性,得到及,结合指对互化即可判断选项A、B、C,最后再通过对勾函数单调性求解范围即可判断选项D.
【详解】令,得,即,,
令,得,即,即,,
记函数,,则,
所以函数在上单调递增,
因为,,所以,故A错误;
又,所以,,
所以,故B正确;
所以,故C正确;
又,所以,结合,得,
因为,所以,且,
因为在区间上单调递减,所以,
即,故D正确;
故选:BCD
【点睛】关键点点睛:本题考查函数的零点问题,解题方法是把函数的零点转化为方程的根,通过结构构造函数,利用函数单调性及指对互化找到根的关系得出结论.
32.(2023·辽宁大连·统考三模)甲乙两队进行比赛,若双方实力随时间的变化遵循兰彻斯特模型:
其中正实数分别为甲 乙两方初始实力,为比赛时间;分别为甲 乙两方时刻的实力;正实数分别为甲对乙 乙对甲的比赛效果系数.规定当甲 乙两方任何一方实力为0时比赛结束,另一方获得比赛胜利,并记比赛持续时长为.则下列结论正确的是( )
A.若且,则
B.若且,则
C.若,则甲比赛胜利
D.若,则甲比赛胜利
【答案】ABD
【分析】计算,A正确,确定,化简得到B正确,甲方获得比赛胜利,则甲方可比赛时间大于乙方即可,计算得到,C错误D正确,得到答案.
【详解】对选项A:若且,则,
所以,由可得,正确;
对选项B:当时根据A中的结论可知,所以乙方实力先为0,
即,化简可得,
即,两边同时取对数可得,
即,即,正确;
对选项C:,若甲方获得比赛胜利,则甲方可比赛时间大于乙方即可,
设甲方实力为0时所用时间为,乙方实力为0时所用时间为,
即,可得,
同理可得,即,解得,
又因为都为正实数,所以可得,甲方获得比赛胜利,错误;
对选项D:根据C知正确;
故答案为:.
【点睛】关键点睛:本题考查了利用函数的性质比较函数值大小,意在考查学生的计算能力,转化能力和综合应用能力,其中,利用作差法比较函数值的大小关系是解题的关键.
33.(2023·湖南衡阳·校联考模拟预测)已知函数,则( )
A.在上最大值为2
B.有两个零点
C.的图像关于点对称
D.存在实数,使的图像关于原点对称
【答案】AC
【分析】根据题意,求导即可判断A,将零点问题转化为函数图像交点问题即可判断B,根据对称中心的定义即可判断C,将问题转化为判断是否为奇函数即可判断D.
【详解】对于,,
在上单调递增,
,故正确;
对于的零点个数即方程的实根个数,
即方程的实根个数,即与图像的交点个数.
在同一坐标系中画出与图像如图所示:
两个函数图像只有一个交点,故B错误;
对于,若的图像关于点对称,
则有对任意恒成立.
恒成立,
的图像关于点对称,故正确;
对于,若存在实数使的图像关于原点对称,则为奇函数.
令对任意恒成立,
即恒成立,
即对任意恒成立,
则,上述方程组无解,故错误.
故选:AC.
34.(2023·河北邯郸·统考二模)已知函数,若存在满足,,下列结论正确的是( )
A.若,则 B.
C. D.
【答案】ACD
【分析】利用导数判断函数的单调性,结合关键点的坐标作出函数图象,由,可得直线与函数的图象有三个交点,观察图象确定的范围,设可得,比较系数,结合条件判断B,C,D.
【详解】因为,
所以,
令,可得或,
当时,,函数在上单调递增,
当时,,函数在上单调递减,
当时,,函数在上单调递增,
又,,,,
作出函数的图象如下:
对于A,由,
可得为方程的三个根,
即为方程的三个根,
即为方程的三个根,
故直线与函数的图象有三个交点,
所以,所以,A正确;
设,可得,
因为,
所以,,,
则,
所以,
所以,
所以,,又,,
所以,,
B错误,C正确,D正确;
故选:ACD.
【点睛】关键点点睛:本题解决的关键在于利用导数确定函数的单调性,作出函数的图象,结合图象研究函数的零点或方程的根.
三、解答题
35.(2023·江西鹰潭·二模)某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近6个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(单位:元/件) 4 5 6 7 8 9
月销售量(万件) 89 83 82 79 74 67
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)已知该商品的月销售额为(单位:万元),利用(1)中的计算正确的结果回答问题:当月销售单价为何值时,啇品的月销值额预报值最大,并求出其最大值.
【答案】(1)甲,理由见解析
(2)时,商品的月销售额预报值最大,最大值为万元
【分析】(1)首先由数据可得,负相关,排除乙,再计算样本中心点,代入方程检验即可;
(2)由题意知,根据二次函数的性质计算可得.
【详解】(1)根据数据知,负相关,故排除乙,
又,,
由,可得过点,
由,可得不过点,
所以甲满足,丙不满足,故甲计算正确.
(2)根据题意
,
当时有最大值,
故当时,商品的月销售额预报值最大,最大值为万元.
36.(2023·浙江温州·统考三模)已知函数在区间上恰有3个零点,其中为正整数.
(1)求函数的解析式;
(2)将函数的图象向左平移个单位得到函数的图象,求函数的单调区间.
【答案】(1);
(2).
【分析】(1)根据给定条件,求出的范围,再结合正弦函数的零点情况列出不等式求解作答.
(2)由(1)求出函数的解析式,进而求出,再利用正切函数的单调性求解作答.
【详解】(1)由,得,
因为函数在区间上恰有3个零点,
于是,解得,而为正整数,因此,
所以.
(2)由(1)知,,
由,得,即有,
因此,
由,解得,
所以函数的单调减区间为.
37.(2023·上海奉贤·统考二模)某小区有块绿地,绿地的平面图大致如下图所示,并铺设了部分人行通道.
为了简单起见,现作如下假设:
假设1:绿地是由线段,,,和弧围成的,其中是以点为圆心,圆心角为的扇形的弧,见图1;
假设2:线段,,,所在的路行人是可通行的,圆弧暂时未修路;
假设3:路的宽度在这里暂时不考虑;
假设4:路用线段或圆弧表示,休息亭用点表示.
图1-图3中的相关边、角满足以下条件:
直线与的交点是,,.米.
小区物业根据居民需求,决定在绿地修建一个休息亭.根据不同的设计方案解决相应问题,结果精确到米.
(1)假设休息亭建在弧的中点,记为,沿和线段修路,如图2所示.求的长;
(2)假设休息亭建在弧上的某个位置,记为,作交于,作交于.沿、线段和线段修路,如图3所示.求修建的总路长的最小值;
(3)请你对(1)和(2)涉及到的两种设计方案做个简明扼要的评价.
【答案】(1)米
(2)米
(3)答案见解析
【分析】如图,以原点,所在直线为轴,建立平面直角坐标系.
(1)由题目条件可得Q,C坐标,利用两点距离公式可得答案;
(2)设,设修建的总路长为,由题可得表达式,后由导数知识可得答案;
(3)可以从多个角度考虑,但以下两个指标是主要的衡量指标:1 修的路相对短,2修的路相对便于居民出行言之有理即可.
【详解】(1)如图,以原点,所在直线为轴,建立平面直角坐标系.
因为点为弧的中点,所以,即
设DC与y轴交于F点,,
则,即,
所以(米).
所以的长约为米;
(2)设,
则,,,
设修建的总路长为,
所以,
,
令,则,,解得,
当时,,函数单调递减;当时,,函数单调递增.
所以(米).
所以修建的总路长的最小值约为米 .
(3)(1)涉及到的设计方案总路径是米,比起方案2显然不是最优(短)路径;
(2)涉及到的设计方案显然相对于方案1是相对不便捷(不利于段附近居民前往).
(说明:可以从多个角度考虑,但以下两个指标是主要的衡量指标:1修的路相对短,2修的路相对便于居民出行)
38.(2023·上海长宁·统考二模)某地新能源汽车保有量符合阻沛型增长模型,其中为自统计之日起,经过t年后该地新能源汽车保有量、和r为增长系数、M为饱和量.
下表是该地近6年年底的新能源汽车的保有量(万辆)的统计数据:
年份 2018 2019 2020 2021 2022
t 0 1 2 3 4
保有量 9.6 12.9 17.1 23.2 31.4
假设该地新能源汽车饱和量万辆.
(1)若,假设2018年数据满足公式,计算的值(精确到0.01)并估算2023年年底该地新能源汽车保有量(精确到0.1万辆);
(2)设,则与t线性相关.请依据以上表格中相关数据,利用线性回归分析确定和r的值(精确到0.01).
附:线性回归方程中回归系数计算公式如下:.
【答案】(1),万辆
(2),
【分析】(1)根据题意代入即可求出,代入利用公式估算即可得解;
(2)设设,转化为关于的线性回归问题,利用公式求出即可.
【详解】(1)由题意可知,2018年对应,,
满足,所以,解得,
因为年对应的,
所以
所以估计2023年底该地新能源汽车保有量为40.3万辆.
(2),
设,则,
t 0 1 2 3 4
9.6 12.9 17.1 23.2 31.4
3.37 3.07 2.77 2.44 2.11
,,
,
所以,
因为,
所以.
(该题无参考数据,需要计算器计算)
39.(2023·四川宜宾·统考三模)已知函数.
(1)讨论函数的极值点个数;
(2)若,的最小值是,求实数m的所有可能值.
【答案】(1)时,恰有一个极值点;时,恰有三个极值点;
(2).
【分析】(1)求出函数的导数,按与分类讨论,并借助零点存在性定理推理作答.
(2)利用(1)中信息,按与探讨利用导数函数的最小值作答.
【详解】(1)函数的定义域是,求导得,
令,求导得,递减,
递增,,
①当时,,递减,递增,有1个极小值点;
②当时,,
令,则,函数在上递增,,即,
当时,,此时,使得,
令,有,令,,
即有在上递增,,函数在上递增,,则,
当时,,此时,使得,
因此递减,递增,
递减,递增,有3个极值点,
所以当时,恰有一个极值点;当时,恰有三个极值点.
(2)由(1)知,①当时,在上单调递减,在上单调递增,
,即,令,
,函数在上单调递增,,则;
②当时,,使得,,使得,
递减,递增,
递减,递增,
其中,则,
显然符合要求,即有,
综上提,
所以m的所有可能值是上的实数.
【点睛】思路点睛:涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.
40.(2023·江苏·统考二模)已知函数,.
(1)若,求函数的单调区间;
(2)若有且只有2个不同的零点,求的取值范围.
【答案】(1)函数的单调减区间是,单调增区间是
(2).
【分析】(1)利用导数法求函数的单调性的步骤即可求解;
(2)利用分类讨论及函数的零点与单调性的关系,再利用导数法求函数的单调性及最值,结合函数零点的存在性定理即可求解.
【详解】(1),,
,恒成立,
所以在递增.
所以当,;
,
所以函数的单调减区间是,单调增区间是.
(2),
①当时,由(1)知有且只有一个零点.
②当时,,则在区间上单调递减,
所以至多有一个零点.
③当时,,,
又因为的图象在区间上连续不间断,
所以,使得,即.
令,,
所以在区间上单调递增,
所以当时,,函数单调递减,
当时,,函数单调递增.
所以,
所以无零点.
④令,当时,,
所以在区间上单调递减,
所以,有,
所以,则.
当时,,,
又因为的图象在区间上连续不间断,
所以,使得,即.
令,,
所以在区间上单调递增,
所以当时,,函数单调递减,
当时,,函数单调递增.
所以.
令.
,
又因为函数在区间上单调递减,在区间上单调递增,且的图象连续不间断,,,
所以有且只有2个零点.
综上,若函数有且只有2个零点,则实数的取值范围是.
【点睛】关键点睛:解决此题第一问是利用二阶导数及函数单调性与导数的正负的关系即可,第二问是利用分类讨论的思想及导数法求函数的单调性和最值,结合函数单调性与函数零点的关系及零点的存在性定理即可.
41.(2023·浙江·统考二模)已知函数,.
(1)求证:;
(2)若函数有三个不同的零点,,.
(ⅰ)求a的取值范围;
(ⅱ)求证:.
【答案】(1)见解析
(2)(ⅰ)(ⅱ)见解析
【分析】(1)代入计算即可求解,
(2)(ⅰ)分类讨论的取值范围即可求解,
(ⅱ)结合函数有三个不同的零点,可得,,进而结合,,可将问题转化成,构造函数,即可利用导数求解.
【详解】(1)由得,
所以,故,
(2)(ⅰ)由于,且当时,,故,
又,所以,所以,
当时,令,所以,
当时,,当时,,所以在单调递减,在单调递增,故,
又,,
所以存在,使得,
因此在,上单调递增,在单调递减,
又当当,
所以此时有3个零点,符合题意,故,
当时,
令,则,
故当时,,此时单调递减,当时,,此时单调递增,故,此时恒成立,在单调递增,至多只有一个零点,不符合题意,
综上可知:,
(ⅱ)由(ⅰ)以及可知,,又,,故也是的根,故,
设
所以在单调递增,故,
即,()
又因为,
所以,
所以
【点睛】本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.
42.(2023·广东佛山·统考二模)已知函数,其中.
(1)若有两个零点,求的取值范围;
(2)若,求的取值范围.
【答案】(1);
(2).
【分析】(1)由题可得方程有两个解,然后构造函数利用导数研究函数的性质进而即得;
(2)由题知恒成立,进而转化为证明当时,然后利用二次函数的性质结合条件可得只需证明即可,再构造函数利用导数证明不等式即得.
【详解】(1)由有两个零点,得方程有两个解,
设,则,
由,可得,单调递增,由,可得,单调递减,
所以的最大值为,当时,当时,,
所以可得函数的大致图象,
所以,解得,
所以,有两个零点时,的取值范围是;
(2)设,即,则恒成立,
由,,可得,
下面证明当时,,即证,
令,则证,,
令为开口向上的二次函数,对称轴为,
由(1)可知,故在时单调递增,
则,
下面只需证明即可,即证,
令,则,
令,则,
所以函数单调递减,且,
所以当时,,当时,,
所以函数在上单调递增,在上单调递减,
故,即,从而不等式得证,
综上,的取值范围是.
【点睛】方法点睛:利用导数证明不等式问题,方法如下:
(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;
(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.
21世纪教育网(www.21cnjy.com)