中小学教育资源及组卷应用平台
第九章《不等式与不等式组》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每题3分,共30分)
1.如果莱州市2019年6月1日最高气温是33℃,最低气温是24℃,则当天莱州市气温t(℃)的变化范围是( )
A.t>33 B.t≤33 C.24<t<33 D.24≤t≤33
2.下列各式是一元一次不等式的是( )
A. B.﹣2x<0 C.2≠1 D.x+2y≤0
3.使不等式4x+3<x+6成立的最大整数解是( )
A.﹣1 B.0 C.1 D.以上都不对
4.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是( )
A.a<0 B.a>0 C.a<1 D.a>1
5.若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是( )
A.27 B.18 C.15 D.12
6.不等式x+2<6的非负整数解有( )
A.2个 B.3个 C.4个 D.5个
7.数a减数b的差大于0,则( )
A.a≥b B.a<b C.a>b D.a>b,且b>0
8.下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是( )
A.2个 B.3个 C.4个 D.5个
9.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为 ( )
A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时
10.某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米
二、填空题(每题3分,共24分)
11. x的与5的差不小于3,用不等式可表示为__________.
12.设x >y,则x+2___y+2, -3x___-3y, x-y___0, x+y___2y.
13.当x_____时,式子3x-5的值大于5x+3的值.
14.不等式组的非负整数解是 .
15.不等式组有2个整数解,则实数a的取值范围是 .
16.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是 .
17.(福建厦门中考)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于_________米.
18.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 折.
三、解答题(共46分,19题分,20题6分,21--24题8分)
19.(8分)解不等式(组):
(1)x>x+1 (2)+1≥2x(把它的解集在数轴上表示出来)
(3)(把它的解集在数轴上表示出来) (4)
20.(6分)关于x,y的方程组的解满足x>y.求m的最小整数值.
21.(8分)已知关于x,y的方程组
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解x大于1,y不小于-1.
22.(8分)若不等式3(x+1)-1<4(x-1)+3的最小整数解是方程x-mx=6的解,求m2-2m-11的值.
23.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?
24.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
参考答案:
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 D B B A A C C B D B
二、填空题
1.x-5≥3 2.> < > > 3.x<-4
14.不等式组的非负整数解是 2、1、0 .
【分析】先求出两个不等式的解集,再求其公共解,再写出解集内的整数值即可.
【解答】解:,
由①得,x<3;
由②得,x≥﹣1,
∴不等式组的解集为:3>x≥﹣1;
∴不等式组的非负整数解为:2、1、0.
15.不等式组有2个整数解,则实数a的取值范围是 8≤a<13 .
【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【解答】解:解不等式3x﹣5>1,得:x>2,
解不等式5x﹣a≤12,得:x≤,
∵不等式组有2个整数解,
∴其整数解为3和4,
则4≤<5,
解得:8≤a<13,
故答案为:8≤a<13.
16.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是 11≤x<14 .
【分析】根据对于实数x我们规定[x]不大于x最大整数,可得答案.
【解答】解:由[]=5,得,
解得11≤x<14,
故答案为11≤x<14.
17.1.3 解析:设导火线的长度为x米,
工人转移需要的时间为:(秒),
由题意得x≥130×0.01=1.3(米).
18.7 解析:设最低打x折,由题意可得,解得x≥7.
三、解答题
19.解:(1)x>x+1,
x﹣x>1,
x>1,
x>2;
(2)+1≥2x,
3x﹣1+2≥4x,
3x﹣4x≥1﹣2,
﹣x≥﹣1,
x≤1,
把它的解集在数轴上表示出来为:
(3),
由①得x≥﹣2,
由②得x>,
故不等式组的解集为:x>.
把它的解集在数轴上表示出来为:
(4),
由①得x≥2,
由②得x<﹣2.
故不等式组无解.
20,关于x,y的方程组的解满足x>y.求m的最小整数值.
解:1
21.解:(1)
①+②,得x=.①-②,得y=.
∴这个方程组的解为
(2)由题意得,解得1<m≤5.
22.解:解不等式3(x+1)-1<4(x-1)+3,得x>3.
它的最小整数解是x=4.把x=4代入方程x-mx=6,
得m=-1,∴m2-2m-11=-8.
23..(1)120×0.95=114(元)
所以实际应支付114元.
(2)设购买商品的价格为x元,由题意得:
0.8x+168<0.95x
解得x>1120
所以当购买商品的价格超过1120元时,采用方案一更合算.
24.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
解得:
答:每台电脑0.5万元,每台电子白板1.5万元.
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则
解得:,即a=15,16,17
故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为万元;
方案二:购进电脑16台,电子白板14台.总费用为万元;
方案三:购进电脑17台,电子白板13台.总费用为万元;
所以,方案三费用最低.