10.1.3古典概率 素养作业 (原卷版+解析版)

文档属性

名称 10.1.3古典概率 素养作业 (原卷版+解析版)
格式 zip
文件大小 101.8KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-05-16 16:14:29

文档简介

第九章 10.1 10.1.3
A组·素养自测
一、选择题
1.下列不是古典概型的是(  )
A.从10名同学中,选出3人参加数学竞赛,每人被选中的可能性的大小
B.同时掷两颗质地均匀的骰子,点数和大于7的概率
C.抛掷一枚均匀硬币首次出现正面为止
D.8个人站成一排,其中甲、乙相邻的概率
2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(  )
A.     B.    
C.     D.
3.(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为(  )
A. B.
C. D.
4.2022年北京冬奥会圆满结束,学校要求出一期有关于冬奥会的主题黑板报,小亮在书写本届冬奥会的主题“Together for a Shared Future”时,只记得Future包含的字母,忘记了正确拼写顺序,请问,小亮乱写,只有两个字母位置不对的概率是(  )
A. B.
C. D.
5.(多选题)下列关于古典概型的说法中正确的是(  )
A.试验中所有可能出现的样本点只有有限个
B.每个事件出现的可能性相等
C.每个样本点出现的可能性相等
D.样本点的总数为n,若随机事件A包含k个样本点,则P(A)=
二、填空题
6.如图,从正方形ABCD的四个顶点及其中心O这5个点中,任取两点观察取点的情况,设事件A为“这两点的距离不大于该正方形的边长”,则事件A包含的样本点为____.
7.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为____.
8.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是____.
三、解答题
9.袋子中有5个大小质地完全相同的球,其中2个红球,3个黄球,从中不放回地依次随机摸出2个球,构成有序数对(x,y),其中x为第一次取到的小球上的数字,y为第二次取到的小球上的数字.将两个红球编号为1,2,三个黄球编号为3,4,5,求下列事件的概率:
(1)A=“第一次摸到红球”;
(2)B=“第二次摸到红球”;
(3)AB=“两次都摸到红球”.
10.甲、乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.
(1)求甲组同学答对题目个数的平均数和方差;
(2)分别从甲、乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.
B组·素养提升
一、选择题
1.一种计算机芯片可以正常使用的概率为0.994,则它不能正常使用的概率是(  )
A.0.994 B.0.006
C.0 D.1
2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(  )
A. B.
C. D.
3.A,B,C三人同时参加一场活动,活动前A,B,C三人都把手机放在了A的包里.活动结束后B,C两人去拿手机,发现三人手机外观看上去都一样,于是这两人每人随机拿出一部,则这两人中只有一人拿到自己手机的概率是(  )
A. B.
C. D.
4.《周髀算经》中对圆周率π有“径一而周三”的记载,已知圆周率π小数点后20位数字分别为14159 26535 89793 23846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为(  )
A. B.
C. D.
二、填空题
5.一袋中装有除颜色外完全相同的3个黑球和2个白球,先后两次从袋中不放回的各取一球.则第一次取出的是白球,且第二次取出的是黑球的概率为___.
6.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选1人表演节目,若选到男教师的概率为,则参加联欢会的教师共有____人.
三、解答题
7.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件.
(1)若每次取后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率;
(2)若每次取后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
8.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
1第九章 10.1 10.1.3
A组·素养自测
一、选择题
1.下列不是古典概型的是( C )
A.从10名同学中,选出3人参加数学竞赛,每人被选中的可能性的大小
B.同时掷两颗质地均匀的骰子,点数和大于7的概率
C.抛掷一枚均匀硬币首次出现正面为止
D.8个人站成一排,其中甲、乙相邻的概率
[解析] C不满足等可能性.
2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( C )
A.     B.    
C.     D.
[解析] 从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P==.故选C.
3.(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( D )
A. B.
C. D.
[解析] 从2至8的7个整数中随机取2个不同的数,共有21种不同的取法,
若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,
故所求概率P==.
故选D.
4.2022年北京冬奥会圆满结束,学校要求出一期有关于冬奥会的主题黑板报,小亮在书写本届冬奥会的主题“Together for a Shared Future”时,只记得Future包含的字母,忘记了正确拼写顺序,请问,小亮乱写,只有两个字母位置不对的概率是( C )
A. B.
C. D.
[解析] 小亮乱写,共有360种写法,其中从F,t,r,e中任选两个位置不对的有6个,从F,t,r,e中选一个,从两个u中任选一个位置不对的有8种,所以只有两个字母位置不对的有6+8=14种,所以小亮乱写,只有两个字母位置不对的概率是=.故选C.
5.(多选题)下列关于古典概型的说法中正确的是( ACD )
A.试验中所有可能出现的样本点只有有限个
B.每个事件出现的可能性相等
C.每个样本点出现的可能性相等
D.样本点的总数为n,若随机事件A包含k个样本点,则P(A)=
[解析] 根据古典概型的特征与公式进行判断,A、C、D正确,B不正确,故选ACD.
二、填空题
6.如图,从正方形ABCD的四个顶点及其中心O这5个点中,任取两点观察取点的情况,设事件A为“这两点的距离不大于该正方形的边长”,则事件A包含的样本点为__OC,OA,OB,OD,AB,BC,CD,DA__.
[解析] 两点距离不大于正方形的边长的线段有:OC,OA,OB,OD,AB,BC,CD,DA.
7.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为____.
[解析] 设数学书为A、B,语文书为C,则不同的排法共有(A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A)共6种排列方法,其中2本数学书相邻的情况有4种情况,故所求概率为P==.
8.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是____.
[解析] 方法1:设3名男同学分别为A,B,C,2名女同学分别为a,b,则所有等可能事件分别为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个,选出的2名同学中至少有1名女同学包含的基本事件分别为Aa,Ab,Ba,Bb,Ca,Cb,ab,共7个,故所求概率为.
方法2:同方法1,得所有等可能事件共10个,选出的2名同学中没有女同学包含的基本事件分别为AB,AC,BC,共3个,故所求概率为1-=.
三、解答题
9.袋子中有5个大小质地完全相同的球,其中2个红球,3个黄球,从中不放回地依次随机摸出2个球,构成有序数对(x,y),其中x为第一次取到的小球上的数字,y为第二次取到的小球上的数字.将两个红球编号为1,2,三个黄球编号为3,4,5,求下列事件的概率:
(1)A=“第一次摸到红球”;
(2)B=“第二次摸到红球”;
(3)AB=“两次都摸到红球”.
[解析] (1)摸出球的情况如下:(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种情况,其中事件A包含(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),有8种情况,故P(A)==.
(2)事件B包含(1,2),(2,1),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),有8种情况,所以P(B)==.
(3)事件AB包含(1,2),(2,1),有2种情况,
所以P(AB)==.
10.甲、乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.
(1)求甲组同学答对题目个数的平均数和方差;
(2)分别从甲、乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.
[解析] (1)由题图可得,甲组同学答对题目的个数分别为:8,9,11,12,
∴甲==10,
s=×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=.
(2)由题图可得,乙组同学答对题目的个数分别为:8,8,9,11.分别从甲、乙两组中各抽取一名同学,设“这两名同学答对题目个数之和为20”为事件A,以(x,y)记录甲、乙两组同学答对题目的个数,基本事件有:(8,8),(8,8),(8,9),(8,11),(9,8),(9,8),(9,9),(9,11),(11,8),(11,8),(11,9),(11,11),(12,8),(12,8),(12,9),(12,11),共16个.
事件A包含的基本事件有:(9,11),(11,9),(12,8),(12,8),共4个.故P(A)==.
B组·素养提升
一、选择题
1.一种计算机芯片可以正常使用的概率为0.994,则它不能正常使用的概率是( B )
A.0.994 B.0.006
C.0 D.1
[解析] 设事件A为“计算机芯片可以正常使用”,事件B为“计算机芯片不能正常使用”,则事件A与B互为对立事件,所以P(B)=1-P(A)=1-0.994=0.006.
2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( A )
A. B.
C. D.
[解析] 记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.
记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个,因此P(A)==.
3.A,B,C三人同时参加一场活动,活动前A,B,C三人都把手机放在了A的包里.活动结束后B,C两人去拿手机,发现三人手机外观看上去都一样,于是这两人每人随机拿出一部,则这两人中只有一人拿到自己手机的概率是( B )
A. B.
C. D.
[解析] 设A,B,C三人的手机分别为A′,B′,C′,则B,C两人拿到的手机的可能情况为(B-A′,C-B′),(B-A′,C-C′),(B-B′,C-A′),(B-B′,C-C′),(B-C′,C-A′),(B-C′,C-B′),共6种.这两人中只有一人拿到自己手机的情况有(B-A′,C-C′),(B-B′,C-A′),共2种.故所求概率为=,故选B.
4.《周髀算经》中对圆周率π有“径一而周三”的记载,已知圆周率π小数点后20位数字分别为14159 26535 89793 23846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为( D )
A. B.
C. D.
[解析] 因为从这20个数字的前10个数字中有7个奇数,后10个数字中有5个奇数,所以从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,这两个数字均为奇数的概率为P==.故选D.
二、填空题
5.一袋中装有除颜色外完全相同的3个黑球和2个白球,先后两次从袋中不放回的各取一球.则第一次取出的是白球,且第二次取出的是黑球的概率为____.
[解析] 设三个黑球编号分别为A1,A2,A3,两个白球编号分别为B1,B2,先后两次从袋中不放回的各取一球.基本情况有:
(A1A2),(A1A3),(A1B1),(A1B2),(A2A3),(A2B1),(A2B2),(A3B1),(A3B2),(B1B2),(A2A1),(A3A1),(B1A1),(B2A1),(A3A2),(B1A2),(B2A2),(B1A3),(B2A3),(B2B1),共20种;
其中,第一次取出的是白球,且第二次取出的是黑球的情况有6种;
故所求概率P==.
6.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选1人表演节目,若选到男教师的概率为,则参加联欢会的教师共有__120__人.
[解析] 设参加联欢会的男教师有n人,则女教师有(n+12)人,依题意有=,解得n=54.因此参加联欢会的教师共有120人.
三、解答题
7.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件.
(1)若每次取后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率;
(2)若每次取后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
[解析] (1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的样本点有6个,即(a1,a2),(a1,b),(a2,a1),(a2,b),(b,a1),(b,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些样本点是等可能的.
设事件A=“取出的两件中恰有一件次品”,所以A={(a1,b),(a2,b),(b,a1),(b,a2)},所以n(A)=4,
从而P(A)===.
(2)有放回地连续取出两件,其所有可能的结果为(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b),共9个样本点组成.由于每一件产品被取到的机会均等,因此可以认为这些样本点的出现是等可能的.设事件B=“恰有一件次品”,则B={(a1,b),(a2,b),(b,a1),(b,a2)},所以n(B)=4,从而P(B)==.
8.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
[解析] (1)抽样比为=,所以应从甲、乙、丙这三个协会中抽取的运动员人数分别为3,1,2.
(2)①从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.
②编号为A5,A6的两名运动员至少有一人被抽到的结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种,所以事件A发生的概率P(A)==.
1