课题:6.1函数
教学目标:
【知识目标】1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
【能力目标】1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
【情感目标】1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:
1、 掌握函数概念。
2、 判断两个变量之间的关系是否可看作函数。
3、 能把实际问题抽象概括为函数问题。
教学难点:
1、 理解函数的概念。
2、 能把实际问题抽象概括为函数问题。
教学过程设计:
一、1回顾与思考
在《小车下滑的时间》 中:
支撑物的高度h和小车下滑的时间t都在变化,它们都是变量,其中小车下滑的时间t随支撑物的高度h的变化而变化, 支撑物的高度h是自变量, 小车下滑的时间t是因变量;
表示两个变量之间关系的方法有:图象法, 列表法, 解析式法(关系式法)
2.创设问题情境,导入新课
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
『生』:摩天轮。
『师』:你们坐过吗?
……
『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?
『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。
『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。
大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:
t/分 0 1 2 3 4 5 ……
h/米
t/分 0 1 2 3 4 5 ……
h/米 3 11 37 45 37 11 ……
『师』:对于给定的时间t,相应的高度h确定吗?
『生』:确定。
『师』:在这个问题中,我们研究的对象有几个?分别是什么?
『生』:研究的对象有两个,是时间t和高度h。
『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。
二、新课学习
1、 做一做
(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?
填写下表:
层数n 1 2 3 4 5 …
物体总数y 1 3 6 10 15 …
『师』:在这个问题中的变量有几个?分别是什么?
『生』:变量有两个,是层数与圆圈总数。
(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)
①计算当fenbie为50,60,100时,相应的滑行距离S是多少?
②给定一个V值,你能求出相应的S值吗?
解:略
2、 议一议
『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?
『生』:相同点是:这三个问题中都研究了两个变量。
不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。
『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。
3、 函数的概念
在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
三、随堂练习
书P152页 随堂练习1、2、3
四 例:用总长为60米的篱笆围成矩形场地,求矩形面积s(米2)与一边a(米)之间的关系式,并指出式中的常量与变量,函数与自变量
练一练
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函数吗?
(1)每一个同学购一本代数书,书的单价为2元,则x个同学共付y元。
(2)计划购买50元的乒乓球,则所购的总数y (个)与单价x (元)的关系。
(3)一个铜球在0 ℃的体积为1000cm3,加热后温度每增加1℃,体积增加0.051cm3,t℃时球的体积为Vcm3
(4)汽车由天津驶往相距120千米的北京,它的平均速度是每小时30千米,你能将汽车距北京的路程S(千米)看成是行驶时间t(小时)的函数吗?
(5)这是一个某种储蓄计算本息和与存入月数的计算公式:y=100+100*0.6%x(100元是本金,0.6%是月利率) 请填表:
当存入月数是一个定值时,相应的本息和确定吗 本息和y可以看成存入月数x的函数吗
五、探究活动
为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x >10),应交水费y元,请用学过的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?
六、本课小结
1、 初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。
2、 在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
3、 函数的三种表达式:
(1) 图象;(2)表格;(3)关系式。
七、课后作业
习题6.1
6个月
4个月
3个月
2个月
1个月
本息和
y(元)
存入月数x
x (月)
存入月数x(y()
x (月)
5个月