1.4整式的乘法(2)
课标与教材:
课标要求:会进行简单的整式乘法运算---多项式乘以多项式
教材分析:
本节课是七下教材第一章《整式的乘法》第4节内容。本节课所学主要知识是单项式与多项式相乘,就是将其转化为单项式与单项式相乘,学生只要理解转化的方法和依据,本节课知识就迎刃而解了。所以,通过前面的学习,学生具备了学习本课的知识基础。从前一节课的学习中,力求通过变式练习及巩固检测,帮助学生加深对于幂的运算性质的区分及应用,学生的计算能力得到进一步提高,也为本课学习奠定了基础。
分析教学重点和难点:
本节课的主要教学任务是通过带领学生解决实际问题,经历探索、验证单项式与多项式相乘的运算法则的过程,正确理解、并能应用法则进行计算。
教学重点:单项式与多项式相乘的运算法则及应用
教学难点:灵活应用单项式与多项式乘法的法则
学情分析:
学生已经知道的:在第一节课的学习中,学生已学会了单项式与单项式相乘的法则,并通过练习进一步巩固了幂的运算性质,在练习的过程中,体会了运用法则进行计算的算理。
学生能自己解决的:本节课所学主要知识是单项式与多项式相乘,就是将其转化为单项式与单项式相乘,学生只要理解转化的方法和依据,本节课知识就迎刃而解了。所以,通过前面的学习,学生具备了学习本课的知识基础。
学生需要教师指导解决的:从前一节课的学习中,力求通过变式练习及巩固检测,帮助学生加深对于幂的运算性质的区分及应用,学生的计算能力得到进一步提高,也为本课学习奠定了基础。
知识与技能:1、在具体情境中了解单项式与多项式乘法的意义。
教学目标:
2、会利用法则进行单项式与多项式的乘法运算,理解单项式与多项式相乘的算理,体会乘法分配律及转化的数学思想。
数学思考:经历探索单项式与多项式乘法运算法则的过程,理解单项式乘以多项式的运算法则。
情感态度:在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣
创新支点(教育智慧):发展学生有条理思考的能力和语言表达能力。
教学方法与媒体:
教学方法:自探共研当堂训练
多媒体辅助材料:多媒体教学课件
教 学 过 程(教学流程)
一、构建动场
教师依次提出以下几个问题:
1、我们本单元学习整式的乘法,整式包括什么?学生回答,整式包括单项式和多项式。
什么是多项式?怎么理解多项式的项数和次数?
学生回答:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,有几个单项式就叫做几项,多项式的次数就是其中次数最高的单项式的次数。
整式乘法除了我们上节课学习的单项式乘以单项式外,还应包含哪些内容?学生回答,还应该有单项式乘以多项式和多项式乘以多项式。由此引入今天将学习单项式与多项式相乘。
单项式乘以多项式最终转化为单项式乘以单项式,所以帮助学生理解单项式与多项式的联系非常重要。
二、自主学习:
给学生提供如下问题情景,并通过问题,引导学生积极探索,发现单项式与多项式相乘的运算规律:
1.实际问题:如图所示,公园中有一块长mx米、宽y米的空地,根据需要在两边各留下宽为a米、b米的两条小路,其余部分种植花草,求种植花草部分的面积.
让学生独立思考完成。
2.提出问题:
(1)你是怎样列式表示种植花草部分的面积的?是否有不同的表示方法?其中包含了什么运算?与同伴交流.
通过小组交流学生可以发现此问题的解决可以有不同的途径:利用面积的不同表示方法:一方面可以先表示出种植花草部分的长与宽,由此得到种植花草部分面积为:,另一方面可以用总面积减去两条小路的面积,得到:,通过小组交流,学生会发现同一部分的面积有了不同的表示方法,自然会去探究两种表示方法的关系,通过教师适时提出问题,引导学生发现两种不同的运算一方面是包含单项式与单项式乘法、再把所得的积相加,另一方面是单项式与多项式相乘,二者最终是统一的,从而发现单项式乘以多项式的方法。这时再通过问题3,让 学生进行更深层次的思考。
2)由上面的探索,我们得到了
=,你能用所学过的知识来说明上面的等式成立的原因吗?
上面等式从左到右运用了乘法分配律,将单项式乘以多项式转化为单项式乘以单项式。
(3)你能用上面的方法计算吗?请说明每一步的依据。
(4)通过以上过程,你发现如何进行单项式与多项式相乘的运算?请你试着用语言来描述。
鼓励学生用自己的语言描述自己所发现的规律,教师再适时进行数学语言的渗透,师生共同概括出:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
从实际问题出发,利用环环相扣的问题,为学生创设了思考与探究的空间。
由此体会到乘法分配律的重要作用,明确算理,为利用法则进行计算奠定基础。在此基础上,学生可以自己总结出单项式乘以多项式的运算法则,并运用语言进行描述,帮助学生总结法则。在教学过程中,教师要帮助学生进一步体会到转化的数学思想。
三、交流探究
通过一组例题和练习,让学生在应用法则解决问题的过程中,获得解题体验,学会方法,进一步明确算理。
例1 计算:
(1)(2)
(3)(4)
例2 计算:
总结:(1)单项式与多项式乘法的方法与步骤是什么?
(2)解题时应注意哪些问题?教师与学生共同概括出:
单项式与多项式相乘的步骤:
①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式;
②转化为单项式的乘法运算;
③把所得的积相加.
解题时需要注意的问题:
①单项式乘多项式的积仍是多项式,其项数与原多项式的项数相同。
②单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定,多项式中的每一项前面的符号是性质符号,同号相乘得正,异号相乘得负,最后写成省略加号的代数和的形式。
③单项式要乘以多项式的每一项,不要出现漏乘现象。
④混合运算中,要注意运算顺序,结果有同类项的要合并同类项。
先让学生独立尝试进行计算,再结合自己解答过程中遇到的困难、出现的错误或悟出的解题体会,在四人小组中进行交流,并将小组讨论的结果在全班进行交流。结合学生出现的问题,示范解题的步骤。
随堂练习:
1.判断正误:
(1)m(a+b+c+d)=ma+b+c+d( )
(2)( )
(3)(-2x)?(ax+b-3)=-2ax2-2bx-6x( )
2.计算:
(3) (4)
(5) (6)
3.先化简,再求值: 2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3 .
延伸拓展
学生探究完成以下几个拓展题:
1.分别计算右图中阴影部分的面积。
2.
3.求证对于任意自然数n,代数式 n(n+7)-n(n-5)+6的值都能被6整除。
在应用法则进行计算时,需要有一定的方法和步骤,以上设计并不是由教师讲给学生听,再进行简单的模仿,而是先让学生独立尝试解决。目的是不断促进学生思考,不断运用所学知识解决新问题,再解决问题的过程中获得能力的提高
四、综合建模
课堂小结:师生以谈话交流的形式共同总结本节课所学知识:
1.单项式乘以多项式的乘法法则及注意事项;
2.转化的数学思想。
课后作业:习题1.6