课题:整式的乘法(三)
一、【课标与教材分析】
会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)
本节课是七下教材第一章《整式的乘法》第4节内容。本节课所学主要知识是多项式与多项式相乘,就是将其转化为单项式与多项式相乘,最终转化为单项式与单项式相乘,所以本节知识实际是前两节知识的综合,学生只要应用转化的方法就可以实现化未知为已知了。
数学思想方法:转化
本节课的主要教学任务是通过带领学生进行拼图活动,在活动中发现、探索、验证多项式乘以多项式的法则,正确理解法则,并能应用法则进行计算
二、【学情分析】
学生已经知道的:
在前面的学习中,学生已学会了单项式与单项式相乘以及单项式与多项式相乘的法则,体会到在解决问题的过程中乘法分配律和转化思想的重要作用。
学生能够自己解决的:
本节知识实际是前两节知识的综合,学生只要应用转化的方法就可以实现化未知为已知了。所以,通过前面的学习,学生具备了学习本课的知识基础。通过前两节课的变式练习及巩固检测,学生的计算能力得到进一步提高,也为本课学习奠定了基础。
学生需要教师指导解决:
本节课所学主要知识是多项式与多项式相乘,就是将其转化为单项式与多项式相乘,最终转化为单项式与单项式相乘
三、【教学目标分析】
教学目标
1、会利用法则进行简单的多项式乘法运算。
2、经历探索多项式与多项式乘法法则的过程,在具体情境中了解多项式乘法的意义,理解多项式乘法法则。
3、理解多项式与多项式相乘运算的算理,发展学生有条理的思考能力和语言表达能力。
(二)教学重点:多项式乘法法则及其应用
(三)教学难点:理解运算法则及其探索过程。
(四)创新支点设计
体验探求数学问题的过程,体验乘法分配律的作用及“整体”、“转化”的数学思想方法在解决问题过程中的应用,获得成功的体验。
四、【教学方法与媒体】
自主学习、小组合作交流
五、教学评价
通过小组评价、师生互评、生生互评、当堂检测的评价方式
六、【教学过程】
一、构建动场
教师利用课前准备好的教具,让学生进行拼图游戏,通过对所拼图形面积的比较,引出多项式与多项式相乘的运算
拼图游戏:以下不同形状的长方形卡片各有若干张,请你选取其中的两张,用它们拼成更大的长方形,尽可能采用多种拼法。
此环节让学生在小组内合作完成,教师要对于小组活动进行指导,小组成员要进行合理分工,可设立观察员、操作员、记录员和发言员等,各尽其责,分工合作,要求尽可能多地拼出不同大小的长方形,并画出图形记录不同的拼图方案。教师注意收集整理学生所画图形,并选取以下四种典型图形加以研究,进一步提出探究问题:
问题1:分别列代数式表示所拼出矩形的面积,你能发现什么?并说出其中包含什么运算?
学生活动:独立列式
图(1)所示的矩形面积为m (a+n )= ma+mn,所含有运算为单项式乘以多项式运算;
图(2)所示的矩形面积为b (a+n) = ba+bn,所含运算为单项式乘以多项式运算;
图(3)所示的矩形面积为n (m+b) = mn+bn,所含运算为单项式乘以多项式运算。
图(4)所示的矩形面积为a (m+b) = am+ab,所含运算为单项式乘以多项式运算。
列代数式表示四个图形的面积时,既可以用大长方形的长乘以宽,也可以转化为每一个小长方形面积之和,因此得到以上四个等式,其中都包含单项式乘以多项式的运算,拼图游戏正是对单项式与多项式相乘的一个几何解释。
问题2:将图1,2,3,4四个图形进一步拼摆,会得到更大的长方形,做一做,也许你会有新的发现。
学生拼出如图所示大正方形后,发现其长为(m+b),宽为(a+n),要计算其面积就是 (m+b)(a+n),其中包含的运算为多项式与多项式相乘运算,从而引入新课。
二、自主学习:
1、引导学生再次从代数运算的角度来研究所拼图形,学生会发现图5的面积既等于图1、图2面积之和,也等于图3、图4面积之和,最终都可以转化为四个小长方形面积之和。由此得到: (m+b)(a+n) = m(a+n) + b (a+n) = ma+mn+ ba+bn, 引导学生利用乘法分配律进行解释,现将其中的一个多项式看作一个整体,再运用单项式与多项式相乘的方法进行计算。具体过程如下:
(m+b)(a+n) = m(a+n) + b (a+n)(把a+n看作一个整体)
= ma+mn+ ba+bn (转化为单项式乘以单项式)
2.教师启发学生用数学式子或用自己的语言归纳、描述多项式乘以多项式的运算法则:
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
3.在进行多项式乘法运算的过程中运用了哪些数学思想方法?与同伴交流。
教师帮助学生反思探究过程,体会出在以上过程中较好地运用了整体、转化和数形结合的数学思想。
三、交流探究
通过一组例题,让学生先独立思考尝试完成,在应用法则解决问题的过程中,获得解题体验,发现问题,学会方法,教师针对学生遇到的困难进行有针对性地讲解,进一步明确算理。
例1 计算:
,
例2 计算:
(2)
师生点评:
(1)用一个多项式的每一项依次去乘另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。
(2)多项式里的每一项都包含前面的符号,两项相乘时先判断积的符号,再写成代数和形式。
(3)展开后若有同类项要合并,化成最简形式。
巩固提高
随堂练习:
1.计算:
①, ②, ③,
④,⑤, ⑥。
2.计算:
拓展应用
本节课是整式乘法单元的最后一节课,应该进一步加强对学生应用知识解决问题能力的训练,因此为学生提供一组拓展题,鼓励学有余力的学生探究完成。
1.若 求m,n的值.
2.已知的结果中不含项和项,求m,n的值.
3.计算(a+b+c)(c+d+e),你有什么发现?
四、综合建模
本节课通过拼图游戏,直观地认识了多项式与多项式的乘法,又从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,归纳出了多项式相乘的法则,重点是明确算理,灵活应用法则计算。提出两个问题,帮助学生形成完整的知识结构,达到对本单元知识的总体认识:
(1)关于整式的乘法,我们共学习了哪几种运算?
(2)在探究的过程中,用到了哪些数学思想方法?
课后作业:习题1.7,问题解决,联系拓展。