课件22张PPT。命题与四种命题高二数学 选修1-1 第一章 常用逻辑用语作业 判断下列语句是否是命题 并判断真假.(1)求证 是无理数。
(2)
(3)你是高二学生吗?
(4)并非所有的人都喜欢苹果。
(5)一个正整数不是质数就是合数。
(6)若 ,则
(7)x+3>0.(1)(3)(7)不是命题,(2)(4)(5)(6)是命题。回顾: 把下列命题改写成“若p则q”的形式,并判定真假。 (1) 负数的平方是正数.
(2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行。
(4) 面积相等的两个三角形全等.
真命题
真命题
假命题
假命题
1.1.2 四种命题下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
若f(x)是周期函数,则f(x)是正弦函数;
若f(x)不是正弦函数,则f(x)不是周期函数;
若f(x)不是周期函数,则f(x)不是正弦函数。观察命题(1)与命题(2)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
若f(x)是周期函数,则f(x)是正弦函数;互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。
原 命 题:其中一个命题叫做原命题。
逆 命 题:另一个命题叫做原命题的逆命题。即 原命题:若p,则q逆命题:若q,则p例如,命题“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”。探究1.举出一些互逆命题的例子,并判断原命题于逆命题的真假;
2.如果原命题是真命题,那么它的逆命题一定是真命题吗?观察命题(1)与命题(3)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
3. 若f(x)不是正弦函数,则f(x)不是周期函数. 为书写简便,常把条件p的否定和结论q的否定分别记作 “┐p” “┐q”互否命题:一个命题的条件和结论恰好是另一个命题条件和结论的否定。
原命题:若p,则q否命题:若┐p,则┐q例如,命题“同位角相等,两直线平行”的否命题是“同位角不相等,两直线不平行”。观察命题(1)与命题(4)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
4. 若f(x)不是周期函数,则f(x)不是正弦函数.互为逆否命题:一个命题的条件和结论恰是另一个命题的结论的否定和条件的否定 原命题: 若p, 则q逆否命题:若┐q, 则┐p同位角相等,两直线平行”的逆否命题是什么?探究:1.举出一些互为逆否命题的例子,并判断原命题与逆否命题的真假;
2.如果原命题是真命题,那么它的逆否命题一定是真命题吗?原命题,逆命题,否命题,逆否命题四种命题形式:
原命题:
逆命题:
否命题:
逆否命题:若 p, 则 q
若 q, 则 p
若┐p, 则┐q
若┐q, 则┐p
判断正误,并说明理由:(1)若原命题是“对顶角相等”,
它的否命题是“对顶角不相等”。
(2)若原命题是“对顶角相等”,
它的否命题是“不成对顶关系的
两个角不相等”。
练习:写出下列命题的逆命题、否命题、逆否命题并判断真假(1)若一个整数的末位数字是0,则这个整数能被5整除;
(2)若一个三角形有两条边相等,则这个三角形有两个角相等;
(3)奇函数的图像关于原点对称。否命题与命题的否定否命题是用否定条件也否定结论的方式构成新命题。
命题的否定是逻辑联结词“非”作用于判断,只否定结论不否定条件。
对于原命题: 若 p , 则 q 有
否命题: 若┐p , 则┐q 。
命题的否定: 若 p ,则┐q 。例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:解:
逆命题:当c >0 时,若ac >bc ,则a >b.
逆命题为真.否命题:当c >0 时,若a ≤b ,则ac ≤ bc .
否命题为真.逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b .
逆否命题为真.准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式. ?不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,
不成立存在某x,
成立练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。(1)若q<1,则方程 有实根。
(2)若ab=0,则a=0或b=0.教学反思:学生能较准确地判断一个语句是否为命题且能准确地写出四种命题,掌握较好。