第九章《不等式与不等式组》单元同步检测试题(含答案)

文档属性

名称 第九章《不等式与不等式组》单元同步检测试题(含答案)
格式 docx
文件大小 207.1KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-05-23 20:26:49

图片预览

文档简介

中小学教育资源及组卷应用平台
第九章《不等式与不等式组》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每题3分,共30分)
1.下列式子中,是不等式的个数有
①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.
A.5个 B.4个 C.3个 D.1个
2.如果不等式ax<b的解集是,那么a的取值范围是
A.a≥0 B.a≤0 C.a>0 D.a<0
3.若a<b,则下列各式正确的是
A.3a>3b B.-3a>-3b C.a-3>b-3 D.>
4.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是(  )
A.a<0 B.a>0 C.a<1 D.a>1
5.若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是(  )
A.27 B.18 C.15 D.12
6.不等式x+2<6的非负整数解有(  )
A.2个 B.3个 C.4个 D.5个
7.数a减数b的差大于0,则(  )
A.a≥b B.a<b C.a>b D.a>b,且b>0
8.下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是(  )
A.2个 B.3个 C.4个 D.5个
9.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为(  )
A. B.
C. D.
10.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有(  )人.
A.40 B.41 C.42 D.43
二、填空题(每题3分,共24分)
11.用适当的符号表示:x的与y的的差不大于-1为 .
12.用不等号填空:若.
13.直接写出下列不等式(组)的解集:① ;② .
14.不等式组的非负整数解是   .
15.不等式组有2个整数解,则实数a的取值范围是   .
16.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是   .
17. 某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 道题,成绩才能在80分以上.
18. 某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于__________米.
三、解答题(共46分,19题分,20题6分,21--24题8分)
19.(8分)解不等式(组):
(1)x>x+1 (2)+1≥2x(把它的解集在数轴上表示出来)
(3)(把它的解集在数轴上表示出来) (4)
20.(6分)关于x,y的方程组的解满足x>y.求m的最小整数值.
21.(8分)已知关于x,y的方程组
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解x大于1,y不小于-1.
22.(8分)若不等式3(x+1)-1<4(x-1)+3的最小整数解是方程x-mx=6的解,求m2-2m-11的值.
23.张勇从家到学校的路程为3 600m,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:m/min),求x的取值范围.试列出能反映上面关系的不等式.
24.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:
甲种原料 乙种原料
维生素C含量(单位/千克) 800 200
原料价格(元/kg) 18 14
(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.
参考答案:
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 B C B A A C C B D B
二、填空题
11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为 不少于1.5 克.
【分析】根据题意求出蛋白质含量的最小值即可.
【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,
∴蛋白质含量的最小值=300×0.5%=1.5克,
∴白质的含量不少于1.5克.
故答案是:不少于1.5
12.若|5﹣10x|=10x﹣5,则x的取值范围是 x≥ .
【分析】先根据绝对值的性质去掉绝对值符号,再求出x的取值范围即可.
【解答】解:∵|5﹣10x|=10x﹣5,
∴5﹣10x≤0,解得x≥.
故答案为:x≥.
13.若满足<x≤1的任意实数x,都能使不等式2x3﹣x2+mx>2成立,则实数m的取值范围是 m≥4 .
【分析】2x3﹣x2+mx>2转化为2x3﹣x2>﹣mx+2,则可以看做函数y=2x3﹣x2与函数y=﹣mx+2的关系,由已知可得0<2x3﹣x2≤1,所以只需﹣m+2≤0即可.
【解答】解:2x3﹣x2+mx>2转化为2x3﹣x2>﹣mx+2,
则可以看做函数y=2x3﹣x2与函数y=﹣mx+2的关系,
∵<x≤1,
∴0<2x3﹣x2≤1,
要使2x3﹣x2>﹣mx+2在<x≤1的任意实数x成立,
∴﹣m+2≤0,
∴m≥4,
故答案为m≥4.
14.不等式组的非负整数解是 2、1、0 .
【分析】先求出两个不等式的解集,再求其公共解,再写出解集内的整数值即可.
【解答】解:,
由①得,x<3;
由②得,x≥﹣1,
∴不等式组的解集为:3>x≥﹣1;
∴不等式组的非负整数解为:2、1、0.
15.不等式组有2个整数解,则实数a的取值范围是 8≤a<13 .
【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【解答】解:解不等式3x﹣5>1,得:x>2,
解不等式5x﹣a≤12,得:x≤,
∵不等式组有2个整数解,
∴其整数解为3和4,
则4≤<5,
解得:8≤a<13,
故答案为:8≤a<13.
16.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是 11≤x<14 .
【分析】根据对于实数x我们规定[x]不大于x最大整数,可得答案.
【解答】解:由[]=5,得,
解得11≤x<14,
故答案为11≤x<14.
17. 17.
【解析】设个同学答对x道题,故,解得:,故这个同学至少要答对17道题,成绩才能在80分以上.故答案为:17.
18. 1.3

三、解答题
19.解:(1)x>x+1,
x﹣x>1,
x>1,
x>2;
(2)+1≥2x,
3x﹣1+2≥4x,
3x﹣4x≥1﹣2,
﹣x≥﹣1,
x≤1,
把它的解集在数轴上表示出来为:
(3),
由①得x≥﹣2,
由②得x>,
故不等式组的解集为:x>.
把它的解集在数轴上表示出来为:
(4),
由①得x≥2,
由②得x<﹣2.
故不等式组无解.
20,关于x,y的方程组的解满足x>y.求m的最小整数值.
解:1
21.解:(1)
①+②,得x=.①-②,得y=.
∴这个方程组的解为
(2)由题意得,解得1<m≤5.
22.解:解不等式3(x+1)-1<4(x-1)+3,得x>3.
它的最小整数解是x=4.把x=4代入方程x-mx=6,
得m=-1,∴m2-2m-11=-8.
23.张勇从家到学校的路程为3 600m,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:m/min),求x的取值范围.试列出能反映上面关系的不等式.
【考点】由实际问题抽象出一元一次不等式.
【分析】早晨8点离开家,要在8点30分到8点40分之间到学校,即所用的时间是大于等于30分钟并且小于等于40分钟,设速度是x米/分,则时间是分钟,根据以上的不等关系,就可以列出不等式.
【解答】解:由题意得,30≤≤40.
即能反映上面关系的不等式为:30≤≤40(90≤x≤120).
【点评】本题考查了由实际问题抽象出一元一次不等式,解决问题的关键是读懂题意,关键是理解要在8点30分到40分之间到达学校,找到所求的量的等量关系.
 
24.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:
甲种原料 乙种原料
维生素C含量(单位/千克) 800 200
原料价格(元/kg) 18 14
(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.
【考点】由实际问题抽象出一元一次不等式.
【分析】(1)根据甲种原料所需的质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有52000单位的维生素C”这一不等关系列不等式;
(2)根据甲种原料和乙种原料每千克的费用分别为18和14,总费用不超过1800元,列出不等式.
【解答】解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg.
根据题意,得800x+200(200﹣x)≥52000;
(2)由题意得,18x+14(200﹣x)≤1800.
【点评】此题主要考查了由实际问题抽象出一元一次不等式,解答本题的关键是仔细审题,建立数学模型,将实际问题转变为数学问题求解.