【注】 本题利用方程的曲线将曲线有交点的几何问题转化为方程有实解的代数问题。一般地,当给出方程的解的情况求参数的范围时可以考虑应用了“判别式法”,其中特别要注意解的范围。另外,“定义法”、“数形结合法”、“转化思想”、“方程思想”等知识都在本题进行了综合运用。
例4. 设a、b是两个实数,A={(x,y)|x=n,y=na+b} (n∈Z),B={(x,y)|x=m,y=3m+15} (m∈Z),C={(x,y)|x+y≤144},讨论是否,使得A∩B≠φ与(a,b)∈C同时成立。(85年高考)
【分析】集合A、B都是不连续的点集,“存在a、b,使得A∩B≠φ”的含意就是“存在a、b使得na+b=3n+15(n∈Z)有解(A∩B时x=n=m)。再抓住主参数a、b,则此问题的几何意义是:动点(a,b)在直线L:nx+y=3n+15上,且直线与圆x+y=144有公共点,但原点到直线L的距离≥12。
【解】 由A∩B≠φ得:na+b=3n+15 ;
设动点(a,b)在直线L:nx+y=3n+15上,且直线与圆x+y=144有公共点,
所以圆心到直线距离d==3(+)≥12
∵ n为整数 ∴ 上式不能取等号,故a、b不存在。
【注】 集合转化为点集(即曲线),而用几何方法进行研究。此题也属探索性问题用数形结合法解,其中还体现了主元思想、方程思想,并体现了对有公共点问题的恰当处理方法。
本题直接运用代数方法进行解答的思路是:
由A∩B≠φ得:na+b=3n+15 ,即b=3n+15-an (①式);
由(a,b)∈C得,a+b≤144 (②式);
把①式代入②式,得关于a的不等式:
(1+n)a-2n(3n+15)a+(3n+15)-144≤0 (③式),
它的判别式△=4n(3n+15)-4(1+n)[(3n+15)-144]=-36(n-3)
因为n是整数,所以n-3≠0,因而△<0,又因为1+n>0,故③式不可能有实数解。
所以不存在a、b,使得A∩B≠φ与(a,b)∈C同时成立
Ⅲ、巩固性题组:
1. 已知5x+12y=60,则的最小值是_____。
A. B. C. D. 1
2. 已知集合P={(x,y)|y=}、Q={(x,y)|y=x+b},若P∩Q≠φ,则b的取值范围是____。
A. |b|<3 B. |b|≤3 C. -3≤b≤3 D. -33. 方程2=x+2x+1的实数解的个数是_____。
A. 1 B. 2 C. 3 D.以上都不对
4. 方程x=10sinx的实根的个数是_______。
5. 若不等式m>|x-1|+|x+1|的解集是非空数集,那么实数m的取值范围是_________。
6. 设z=cosα+i且|z|≤1,那么argz的取值范围是____________。
7. 若方程x-3ax+2a=0的一个根小于1,而另一根大于1,则实数a的取值范围是______。
8. sin20°+cos80°+sin20°·cos80°=____________。
9. 解不等式: >b-x
10. 设A={x|<1x<3},又设B是关于x的不等式组的解集,试确定a、b的取值范围,使得AB。 (90年高考副题)
11. 定义域内不等式〉x+a恒成立,求实数a的取值范围。
12. 已知函数y=+,求函数的最小值及此时x的值。
13. 已知z∈C,且|z|=1,求|(z+1)(z-i)|的最大值。
14. 若方程lg(kx)=2lg(x+1)只有一个实数解,求常数k的取值范围。
二、分类讨论思想方法
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
Ⅰ、再现性题组:
1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若AB,那么a的范围是_____。
A. 0≤a≤1 B. a≤1 C. a<1 D. 02.若a>0且a≠1,p=log(a+a+1),q=log(a+a+1),则p、q的大小关系是_____。
A. p=q B. pq D.当a>1时,p>q;当03.函数y=+++的值域是_________。
4.若θ∈(0, ),则的值为_____。
A. 1或-1 B. 0或-1 C. 0或1 D. 0或1或-1
5.函数y=x+的值域是_____。
A. [2,+∞) B. (-∞,-2]∪[2,+∞) C. (-∞,+∞) D. [-2,2]
6.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为_____。
A. B. C. D. 或
7.过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。
A. 3x-2y=0 B. x+y-5=0 C. 3x-2y=0或x+y-5=0 D.不能确定
【简解】1小题:对参数a分a>0、a=0、a<0三种情况讨论,选B;
2小题:对底数a分a>1、03小题:分x在第一、二、三、四象限等四种情况,答案{4,-2,0};
4小题:分θ=、0<θ<、<θ<三种情况,选D;
5小题:分x>0、x<0两种情况,选B;
6小题:分侧面矩形长、宽分别为2和4、或4和2两种情况,选D;
7小题:分截距等于零、不等于零两种情况,选C。
Ⅱ、示范性题组:
例1. 设0
【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论。
【解】 ∵ 0
1 当00,log(1+x)<0,所以
|log(1-x)|-|log(1+x)|=log(1-x)-[-log(1+x)]=log(1-x)>0;
2 当a>1时,log(1-x)<0,log(1+x)>0,所以
|log(1-x)|-|log(1+x)|=-log(1-x) -log(1+x)=-log(1-x)>0;
由①、②可知,|log(1-x)|>|log(1+x)|。
【注】本题要求对对数函数y=logx的单调性的两种情况十分熟悉,即当a>1时其是增函数,当0例2. 已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数: ①. CA∪B且C中含有3个元素; ②. C∩A≠φ 。
【分析】 由已知并结合集合的概念,C中的元素分两类:①属于A 元素;②不属于A而属于B的元素。并由含A中元素的个数1、2、3,而将取法分三种。
【解】 C·C+C·C+C·C=1084
【注】本题是排列组合中“包含与排除”的基本问题,正确地解题的前提是合理科学的分类,达到分类完整及每类互斥的要求,还有一个关键是要确定C中元素如何取法。另一种解题思路是直接使用“排除法”,即C-C=1084。
例3. 设{a}是由正数组成的等比数列,S是前n项和。 ①. 证明:
【分析】 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。其中在应用等比数列前n项和的公式时,由于公式的要求,分q=1和q≠1两种情况。
【解】 设{a}的公比q,则a>0,q>0
①.当q=1时,S=na,从而SS-S=na(n+2)a-(n+1)a=-a<0;
当q≠1时,S=,从而
SS-S=-=-aq<0;
由上可得SS②. 要使=lg(S-c)成立,则必有(S-c)(S-c)=(S-c),
分两种情况讨论如下:
当q=1时,S=na,则
(S-c)(S-c)-(S-c)=(na-c)[(n+2)a-c]-[(n+1)a-c]=-a<0
当q≠1时,S=,则(S-c)(S-c)-(S-c)=[-c][ -c]-[-c]=-aq[a-c(1-q)]
∵ aq≠0 ∴ a-c(1-q)=0即c=
而S-c=S-=-<0 ∴对数式无意义
由上综述,不存在常数c>0, 使得=lg(S-c)成立。
【注】 本例由所用公式的适用范围而导致分类讨论。该题文科考生改问题为:证明>logS ,和理科第一问类似,只是所利用的是底数是0.5时,对数函数为单调递减。
例1、例2、例3属于涉及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类,即题型为概念、性质型。
例4. 设函数f(x)=ax-2x+2,对于满足1
1 4 x
1 4 x
【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。
【解】当a>0时,f(x)=a(x-)+2-
∴ 或
或
∴ a≥1或;
当a<0时,,解得φ;
当a=0时,f(x)=-2x+2, f(1)=0,f(4)=-6, ∴不合题意
由上而得,实数a的取值范围是a> 。
【注】本题分两级讨论,先对决定开口方向的二次项系数a分a>0、a<0、a=0三种情况,再每种情况结合二次函数的图像,在a>0时将对称轴与闭区间的关系分三种,即在闭区间左边、右边、中间。本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。
例5. 解不等式>0 (a为常数,a≠-)
【分析】 含参数的不等式,参数a决定了2a+1的符号和两根-4a、6a的大小,故对参数a分四种情况a>0、a=0、-【解】 2a+1>0时,a>-; -4a<6a时,a>0 。 所以分以下四种情况讨论:
当a>0时,(x+4a)(x-6a)>0,解得:x<-4a或x>6a;
当a=0时,x>0,解得:x≠0;
当-0,解得: x<6a或x>-4a;
当a>-时,(x+4a)(x-6a)<0,解得: 6a
例6. 设a≥0,在复数集C中,解方程:z+2|z|=a 。 (90年全国高考)
【分析】由已知z+2|z|=a和|z|∈R可以得到z∈R,即对z分实数、纯虚数两种情况进行讨论求解。
【解】 ∵ |z|∈R,由z+2|z|=a得:z∈R; ∴ z为实数或纯虚数
当z∈R时,|z|+2|z|=a,解得:|z|=-1+ ∴ z=±(-1+);
当z为纯虚数时,设z=±yi (y>0), ∴ -y+2y=a 解得:y=1± (0≤a≤1)
由上可得,z=±(-1+)或±(1±)i
【注】本题用标准解法(设z=x+yi再代入原式得到一个方程组,再解方程组)过程十分繁难,而挖掘隐含,对z分两类讨论则简化了数学问题。
【另解】 设z=x+yi,代入得 x-y+2+2xyi=a;
∴
当y=0时,x+2|x|=a,解得x=±(-1+),所以z=±(-1+);
当x=0时,-y+2|y|=a,解得y=±(1±),所以±(1±)i。
由上可得,z=±(-1+)或±(1±)i
【注】此题属于复数问题的标准解法,即设代数形式求解。其中抓住2xy=0而分x=0和y=0两种情况进行讨论求解。实际上,每种情况中绝对值方程的求解,也渗透了分类讨论思想。
例7. 在xoy平面上给定曲线y=2x,设点A(a,0),a∈R,曲线上的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40)
【分析】 求两点间距离的最小值问题,先用公式建立目标函数,转化为二次函数在约束条件x≥0下的最小值问题,而引起对参数a的取值讨论。
【解】 设M(x,y)为曲线y=2x上任意一点,则
|MA|=(x-a)+y=(x-a)+2x=x-2(a-1)x+a=[x-(a-1)]+(2a-1)
由于y=2x限定x≥0,所以分以下情况讨论:
当a-1≥0时,x=a-1取最小值,即|MA}=2a-1;
当a-1<0时,x=0取最小值,即|MA}=a;
综上所述,有f(a)= 。
【注】本题解题的基本思路是先建立目标函数。求二次函数的最大值和最小值问题我们十分熟悉,但含参数a,以及还有隐含条件x≥0的限制,所以要从中找出正确的分类标准,从而得到d=f(a)的函数表达式。
Ⅲ、巩固性题组:
1. 若log<1,则a的取值范围是_____。
A. (0, ) B. (,1) C. (0, )∪(1,+∞) D. (,+∞)
2. 非零实数a、b、c,则+++的值组成的集合是_____。
A. {-4,4} B. {0,4} C. {-4,0} D. {-4,0,4}
3. f(x)=(a-x)|3a-x|,a是正常数,下列结论正确的是_____。
A.当x=2a时有最小值0 B.当x=3a时有最大值0
C.无最大值,且无最小值 D.有最小值但无最大值
4. 设f(x,y)=0是椭圆方程,f(x,y)=0是直线方程,则方程f(x,y)+λf(x,y)=0 (λ∈R)表示的曲线是_____。
A.只能是椭圆 B.椭圆或直线 C.椭圆或一点 D.还有上述外的其它情况
5. 函数f(x)=ax-2ax+2+b (a≠0)在闭区间[2,3]上有最大值5,最小值2,则a、b的值为_____。
A. a=1,b=0 B. a=1,b=0或a=-1,b=3
C. a=-1,b=3 D. 以上答案均不正确
6.方程(x-x-1)=1的整数解的个数是_____。
A. 1 B. 3 C. 4 D. 5
7. 到空间不共面的4个点距离相等的平面的个数是_____。
A. 7 B. 6 C. 5 D. 4
8.z∈C,方程z-3|z|+2=0的解的个数是_____。
A. 2 B. 3 C. 4 D. 5
9.复数z=a+ai (a≠0)的辐角主值是______________。
10.解关于x的不等式: 2log(2x-1)>log(x-a) (a>0且a≠1)
11.设首项为1,公比为q (q>0)的等比数列的前n项和为S,又设T=,求T 。
12. 若复数z、z、z在复平面上所对应三点A、B、C组成直角三角形,且|z|=2,求z 。
13. 有卡片9张,将0、1、2、…、8这9个数字分别写在每张卡片上。现从中任取3张排成三位数,若6可以当作9用,问可组成多少个不同的三位数。
14. 函数f(x)=(|m|-1)x-2(m+1)x-1的图像与x轴只有一个公共点,求参数m的值及交点坐标。
三、函数与方程的思想方法
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程