密山市第四中学2022-2023年高二下学期
数学期中考试
一、单项选择题:共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,集合则( )
A. B. C. D.
2.设函数,则=( )
A. B. C. D. 3
3.函数的定义域是( )
A. B. C. D.
4.下列四个命题:
①有意义;
②函数是其定义域到值域的映射;
③函数的图像是一直线;
④函数的图像是抛物线,其中正确命题的个数是( )
A. 1 B. 2 C.3 D.4
5.已知集合,若 ,则实数的取值范围是( )
A. B. C. D.
6.在△ABC中,cos2=(a、b、c分别为角A、B、C的对边),则△ABC的形状为()
A.直角三角形B.等腰三角形或直角三角形
C.等腰直角三角形D.正三角形
7.已知△ABC中,A、B、C的对边分别为a、b、c.若a=c=+,且A=75°,则b等于( )A.2 B.-C.4-2 D.4+2
8.在△ABC中,已知b2-bc-2c2=0,a=,cos A=,则△ABC的面积S为( )
A.B.C.D.6
9.在△ABC中,AB=7,AC=6,M是BC的中点,AM=4,则BC等于( )
A.B.C. D.
10.在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tan B=ac,则角B的值为( )A. B.C.或 D.或
二、多项选择题(共3小题,每小题4分,共12分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)
11.下列四个命题中假命题是( )
A. B.
C.使<1 D.
12.函数的一个单调递减间为( )
A. B. C. D.
13.定义域为R的函数在上是减函数,若函数是偶函数,则( )
A. B. C. D.
三、填空题:共4小题,每小题4分,共16分.
14.设A,B是R的两个子集,对任意,定义:,
①若,则对任意 ;
②若对任意,则A,B的关系为 .
15.已知方程的解在内,是的整数倍,则实数的值是 .
16.函数的零点为 .
17.已知为第三象限的角,且,则 .
三、解答题:共6小题,共82分.
18.(本小题满分12分)
设矩形ABCD(AB>BC)的周长为24,把它沿对角线AC对折,折过去后,AB交DC于点P,设AB=,求△ADP的最大面积以及相应的的值.
19.(本题满分14分)
阅读下列材料,解答问题
设
则原方程可化为
所以,即
解之得,
则不等式的解集为.
请利用上述方法解不等式
20.(本小题满分14分)
已知不等式的解集为M.
(1)若2,求实数的取值范围;
(2)当M为空集时,求不等式的解集.
21.(本小题满分14分)
已知A,B,C是三角形的内角,是方程的两根.
(1)求角A;
(2)若,求.
22.(本小题满分14分)
若函数的最小值为-2,且它的图象经点和,且函数在上单调递增.
(1)求的解析式;
(2)若,求的值域.
23.(本小题满分14分)
某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金只取整数,并且要求出租车一日的总收入必须高于这一日的管理费用,用表示出租自行车的日净收入(日净收入=一日出租自行车的总收入-管理费用).
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使日净收入最多?
2 / 4
第 2页 /共 6页密山市第四中学2022-2023年高二下学期数学期中考试答案
B
C
B
A
C
C
D
D
A
10.D
11.ABD
12.BC
13.CD
14.① 0; ②.
15.1
16.3
17.2
18.设
又周长为24,所以
∴
当时,△ADP的最大面积为
19..
20.(1)解得.
(2)当M为空集时,的解为空集,∴,
∴
∴
即,解得
∴此不等式的解集为.
21.(1)
(2)由,
得
∵
∴
∴
∵,舍去
故
22.(1)
(2)∵
由图象可知的值域为[1,2].
23.(1)
定义域为
(2)对于
显然当时,(元)
对于
当时,(元)
∵270>185
∴当每辆自行车的日租金定为11元时,才能使日净收入最多.