三 剪纸中的数学——分数与小数的互化
教学目标:
使学生理解并掌握分数化成小数的方法,能应用分数的基本性质、分数与除法的关系把分数化成小数,并能灵活地选择适当的方法把分数化成小数。
通过教学培养学生观察、比较、归纳、概括等能力,同时培养学生的创新意识和创造能力。
二.教学重难点
重点:理解并掌握分数化小数的方法。
难点:能根据分数的特点选择合理、简便的方法把分数化小数。
三.教学过程:
(一)复习铺垫
1、教师:前面我们学习过分数和小数,老师看一下哪位同学掌握的扎实。
【1】说出下列各分数的分数单位和有几个这样的单位。十分之三一百分之十七一千分之九【2】、(1)0.9里面有9个()分之一,它表示()分之();(2)0.07里面有7个()分之一,它表示()分之();(3)0.013里面有13个()分之一,它表示()分之();教师向学生指出:小数实际上就是分母是10、100、1000......的分数的另一种表示形式,所以可以把小数直接写成分母是10、100、1000......的分数,然后引出新课。
探究新知
教学把小数化成分数。教师出示题目:把下面的小数化成分数:0.8 0.12 0.05让学生先想一想怎样把这些小数化成分数。
教师提问:0.8是几个十分之一?是十分之几?学生可能会说出是8/10,这时教师提问:化成的分数是最简分数吗?应该怎么办?使学生明确化成的分数不是最简分数,要约成最简分数。接着让学生想0.12是几分之几?化成的分数是多少,然后,使学生在教师的启发下,找出规律:把一位小数化成分数时,分母是1后面写1个0;把两位小数化成分数时,分母是1后面写2个0;把三位小数化成分数时,分母是1后面写3个0......都是把原来的小数丢掉小数点作分子,化成分数后,能约分的要约分。小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。
教学把分数化成小数。
出示题目:把下面的分数化成小数。、、、化成小数。
提问:请同学们观察、这两个分数的分母是什么特点?你能根据分数和小数的意义,把这些分数化成小数吗?
启发学生根据分数和小数的意义,可以把分母是10、100、1000的分数直接写成小数。分母是10,100,1000,...的分数化小数,可以直接去掉分母,看分母中1后面有几个0,就从分子中从最后一位起向左数出几位,点上小数点。
教师:这两个分数的分母与刚刚那两个分数的分母有什么不同?怎样把这些分母不是10、100、1000......的分数化成小数?
教师:我们先看怎样把化成小数,根据分数与除法的关系,分数的分子相当于除法中的什么?分母相当于除法中的什么?那么可以写成什么?=7÷20,并提问:7除以20你们会做了吗?然后让学生把这两道题做完,=19÷30,教师可提醒学生:分子除以分母,除不尽时,得数一般保留三位小数求出它们的近似值。
(设计意图:结合小数的意义,逐步把学生引入到知识的最近发展区,让学生在观察、讨论、交流中自己找到解决问题的办法,实现合作学习。由于学生已经掌握了分母是10、100、1000、......的分数化成小数的方法,对于分母不是10、100、1000......的分数化成小数,不能直接化成小数,于是产生了认知上的冲突,从而激发起学生解决问题的欲望,此时让学生分组讨论、研究,学生在合作交流中自己找到了解决问题的办法。)
再引导学生总结出分数化成小数的一般方法,同时指出例题中把分数改写成除法算式,目的是强调分数与除法的关系,计算熟练以后这一步可以省略不写。分母不是10,100,1000,...的分数化小数,要用分母去除分子;除不尽的,可以根据需要按四舍五入法保留三位小数。四、谈收获:学生谈收获?