【新学期备课参考】2015届北师大版九年级数学上册《1.3 正方形的性质与判定》同步教学设计+课件+拓展练习资源(10份)

文档属性

名称 【新学期备课参考】2015届北师大版九年级数学上册《1.3 正方形的性质与判定》同步教学设计+课件+拓展练习资源(10份)
格式 zip
文件大小 3.1MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2014-09-03 14:02:24

文档简介

特殊平行四边形
3. 正方形的性质与判定(一)
一、学生起点分析
学生的知识技能基础:学生已经较为系统的学习了平行四边形、矩形、菱形的基本性质与判定,已经具有了四边形的基本认知与知识结构,这些已有的认知结构可以迁移到正方形的学习中来。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些对四边形探索的具体方法,并能解决一些简单的现实问题,感受到数学信息的收集和处理的必要性和作用,获得了从事探究活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.
2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.
3、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.
4、培养学生勇于探索、团结协作交流的精神。激发学生学习的积极性与主动性。
三、教学过程设计
本节课设计了七个教学环节:第一环节:课前准备;第二环节:情境引入;第三环节:合作学习;第四环节:性质应用;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节:课前准备
活动内容:搜集身边的矩形(提前布置)。
以合作小组为单位,开展调查活动:
各尽所能收集生活中应用的各种矩形图形。
准备好数学常用的度量工具:直尺、量角器、圆规。
活动目的:通过活动,使学生能获取尽可能多的关于矩形的信息,体会数学在社会生活中的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;使学生通过对目标问题展开调查采访或查阅资料,在此过程中培养学生勇于探索、团结协作的精神。激发学生学习的积极性与主动性。
活动的注意事项:学生搜集的方式、以及展示结果的形式不限,可以上网搜集图片,可以是照片,也可以搜集实物,或者学生自己喜欢的其它形式。这样可以在极大程度上保护、鼓励学生参与的积极性和热情,并且可以极大程度上凝聚学生间的合作精神。
附部分学生作品:
学生搜集的图片或实物(部分):


第二环节:情境引入
活动内容:展示学生的成果,包括图片以及实物等各种学生能得到的“图形”。并让学生利用适当的度量工具,对搜集到的图形素材进行度量或者对素材进行适当的操作,并记录、整理数据。
活动目的:培养学生从具体数学对象中获得必要的数学要素(数据)以及对素材进行适当的操作的能力。培养学生对于数据进行整理、解析的能力。培养学生从数据中发现、推导结论的能力。(通过对测量数据的分析、发现其中的相同与不同,便可较为自然的引导到本节课。)同时也可以最大程度的满足不同认知能力、信息搜集能力学生的不同认知需求(比如:实物的同学可以利用手头的测量工具得数据,而善于利用电脑的同学则可以将其搜集到的图片放入合适的软件(如几何画板)中,利用软件的便利来获得数据。)并可以极大程度上增强学生对于度量数据(图形性质)的感受。
活动的注意事项:我们要注意实物测量、操作和利用软件进行测量,这两种方式显然各有可取之处,比如学生利用实物进行折叠显然比用软件要方便的多,所以老师要给予恰当的引导。
由于度量会有误差,所以老师应该提醒学生小组多次(或多人分别)测量减小误差。
由于可测量的数据较多,所以老师应该提醒学生可以借鉴前几节课的研究,对于测量数据进行适当的选择。并整理记录数据。老师可以给学生一个示范性的数据整理模式(如下表),但不要强求。
图形名称
数据

线

数量关系
位置关系
对角线
数量关系
位置关系
对称性
第三环节:合作学习
活动内容:选取一些有代表性的小组,对其得到的的数据或是操作得到的结论进行交流。
活动目的:是为了完成以下任务。
第一任务:①引出“有一组临边相等的矩形叫做正方形”②通过数据的交流自然的回答了“议一议”中的两个问题:(1)正方形是菱形吗?(2)你认为正方形有哪些性质?
第二任务:通过引导学生回顾关于矩形、菱形的性质、“正方形既是矩形又是菱形”得出关于正方形的两个定理“正方形的四个角都是直角四条边都相等”“正方形的对角线互相垂直平分”
第三任务:引用书上的议一议,让学生解决“正方形有几条对称轴”
活动的注意事项:第一任务:学生对于(1)正方形是菱形吗?这个问题,无论是操作、度量实物还是借助于软件都比较容易得到结论。对于(2)你认为正方形有哪些性质?中的“四个角都是直角”“四条边都相等”的结论,无论是操作、度量实物还是借助于软件也都比较容易得到,但是对于“正方形的对角线互相垂直平分”这个结论,学生有可能不一定能够发现或者得到的结论不一定完整。所以老师在此处还是要进行必要的引导。比如:“我们来关注一下对角线的数量和位置关系”或者“既然正方形也是菱形,那么它的对角线。。。。。(引导学生回答)”
第二任务:注意引导学生数学表达的准确性。此处尽量引导学生自我完成,哪怕让学生在多次失败中不断的自我完善,也比老师给出结论要好,至少锻炼学生的自我修正、完善能力。
第三任务:此时学生已经有了前面的探索经验,其实从方法上来说,已经无障碍,只是可能学生没有关注到这个角度。
此时我们可以引导学生通过操作(折纸)得到对角线然后再研究,或者我们可以从另一个角度给学生适当的提示“正方形也是菱形,菱形还研究过。。。。。。(期待学生思考)“
第四环节:性质应用
活动内容:①引用课本例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”
活动目的:①使学生对通过自己的实践总结得到的关于正方形的性质能够熟练运用、解决具体问题。实际上就是充分锻炼学生理论依据(本节课是关于正方形的定理)图形化的能力,也锻炼了学生文本信息图形化的能力。充分锻炼学生的空间观念。
②使学生养成阶段性回顾总结的习惯,使其逐渐养成良好的学习品质。同时又是对知识结构的再建过程,是学生丰富、重建自身认知结构的必要手段。
活动的注意事项:
①在引用本例题时由于问题中“BE与DF之间又怎样的关系?”这个表述过于笼统,所以可能有部分学生可能会对“关系”的理解不到位,只理解为数量或位置关系,所以在具体上课时要根据具体的学情,进行适当的分解。
比如分层教学,可将问题分解为“BE与DF之间又怎样的数量关系?”“BE与DF之间又怎样的位置关系?”“BE与DF之间又怎样的数量、位置关系?”“BE与DF之间又怎样的关系?”分别由不同层次的学生选择适合自己的问题。最后一定要让学生明确“BE与DF之间又怎样的关系”包含数量和位置两种关系。或者我们可以在课堂上故意让“位置”“数量”两种不同观点的同学交流自己的意见,从而引发同学的关注与参与,进而在交争论中达成共识,加深印象。
②实际上“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”中“你能用一个图直观地表示它们之间的关系吗?”的这个表述在一定程度上是对学生回答问题方式的一种约束,不利于学生充分调动自己的认知结构对此问题做出“丰富多彩”的展示,建议将此表述改为“你能用一个你喜欢的方式直观地表示它们之间的关系吗?”更贴近学生,更有利于学生做出“丰富多彩”的展示。可预知学生可能会出现图的展示,可能会出现表格的展示,甚至可能出现卡通的展示,小品式的展示。。。。。既激发了学生参与的热情,又丰富了总结的形式,何乐而不为。我们也可以采用如下的方式对学生进行追问:“这是老师的,你的呢?”
来不断引导学生参与、思考。
第五环节:练习提高
活动内容:
1:如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?
2:如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF。你能找出图中的全等三角形吗?选择其中一对进行证明。
活动目的:对本节知识进行巩固练习。
活动注意事项:其实我们教师可以根据自己课堂的具体学情,对题目进行适当的替换。但是这种对于学生来说的初次尝试,不宜太复杂,以免打击学生的主动性、积极性。
第六环节:课堂小结
活动内容:总结正方形的性质:包括其边角关系以及对称性。其次将平行四边形、菱形、矩形、正方形之间的联系建立起适合学生自己的知识结构并内化为自己数学品质的一部分。
活动目的:一是要通过此环节对学过的知识进行回顾,并且进行在加工,内化为自己的数学品质。同时在此过程中学生间的相互交流、沟通、甚至是争论,也将逐渐在学生意识中渗透,进而使其将“交流、沟通、争论等等”逐渐吸收变成自己获取信息的方式中的一种。
活动注意事项:
总结最好主要由学生自主完成,老师只是在学生将某些知识或思想方法遗忘时进行适当的引导即可。因为学习的意义首先便是吸引受教育对象的主动参与,然后才会有后续的认知探究;其次这种亲身参与获得的感受与收获更容易内化为学生自身的认知结构;再次这种多个交流对象间的交流甚至争论不仅加深了学生对知识的认知,更重要的是这是触发灵感、产生新问题的重要途径。
第七环节:布置作业
课本 P22
A-1层作业:习题1.7
A-2层作业:知识技能T1,T2
B层作业:数学理解T3
比如我们可以将1进行变式:斜边为2的等腰直角三角形的腰长是多少?
比如我们可以将2中的等边△CBE改为∠EBC=∠ECB=50°。等等。。
总之作业我们一定要源自于教材,如果需要我们可以以此为依据对题目进行适当的变式以便达到练习分层的目的。
四、教学设计反思:
1:要智慧的用教材:
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。让学生通过搜集材料亲自去感受数学在实际生活中的应用,体会数学的实际价值。培养学生善于观察生活、搜集数学信息、对信息进行整理的能力。
2:给学生提供充分展示自己的机会
通过课前小组合作社会调查、课堂展示讲解的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解、思维误区以及学生的发展就近区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
留给学生充分的独立思考的时间、给予它们充分交流的自由、争论,因为这样学生自身的知识结构才能更好的重建,才有可能碰撞出灵感产生新的问题,毕竟源自于自身思考的问题才是带领学生更深入思考的利器。其次学生主导不要忽略教师应有的必要引领与指导才能使学习更具实效性。
课件17张PPT。第一章 特殊平行四边形 第3节 正方形的性质与判定(一)
情境引入 看我们收获了什么?看我们收获了什么?合作学习第二类图形就是正方形,我们给出定义:
有一组邻边相等的矩形叫做正方形.
议一议:
(1)正方形是菱形吗?
(2)你认为正方形有哪些性质?从我们得到数据分析:正方形既是矩形
又是菱形,它具有矩形和菱形的所有性质.请同学们参照下表或独立整理矩形菱形
的性质.于是我们得到了正方形的两条定理:
定理
正方形的四个角都是直角,四条边都相等
定理
正方形的对角线相等且互相垂直平分想一想:
正方形有几条对称轴解析:
正方形有4条对称轴.
经验层面:可通过折叠.
分析层面:正方形具有矩形、菱形的所有性质,所以必然具有矩形过每组对边中点的对称轴和菱形过对角线的对称轴.
性质应用例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:(1)∵四边形ABCD是正方形.
∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).
∴∠DCF=180°-∠BCE=180°-90°=90°.
∴∠BCE=∠DCF.
又∵CE=CF.
∴△BCE≌△DCF.
∴BE=DF.
(2)延长BE交DE于点M,(如图1-19).
∵△BCE≌△DCF.
∴∠CBE=∠CDF.
∵∠DCF=90°.
∴∠CDF+∠F=90°.
∴∠CBE+∠F=90°.
∴∠BMF=90°.
∴BE⊥DF.
议一议:平行四边形、菱形、矩形、正方形之间有
么关系?你能用一个你喜欢的方式直观地
示它们之间的关系吗 ?与同伴交流.这是老师的,你的呢?练习提高1:如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?
2:如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF。你能找出图中的全等三角形吗?选择其中一对进行证明.
1:解:图中共有8个等腰三角形.
2:解:图中的全等三角形共有3对,
分别是△ADC与ABC,
△FCD与FCB,
△FAD与△FAB.
选择△FAD≌△FAB证明,过程如下:∵正方形ABCD,
∴AD=AB,∠DAF=∠BAF,
又∵AF=AF
∴△FAD≌△FAB.课堂小结1:正方形的性质:包括边、角、对角线以及对称性.
2:将平行四边形、矩形、菱形、正方形之间的联系.
3:建立起适合自己的知识结构并内化为自己数学品质的一部分.布置作业课本 P22
A-1层作业:习题1.7
A-2层作业:知识技能T1,T2
B层作业:数学理解T3与正方形有关的趣味问题
亲们,你们知道吗?关于正方形还有更多的精彩内容等待我们去探索,不妨让我们了解一些,如果有兴趣的话不妨试一试。让我们来开阔的视野。
1:图中有几个正方形? 2:请问你能由方圆图形想到什么成语?

3:正方形在建筑中的应用 4:正方形的创意设计

5:正方形的魔幻图案

6:找个正方形,跟我做,看你能得到啥?
第一步;先找一张正方形纸,6厘米的正方形,沿着两个对角折叠出对角线。 第二步;沿着对角线把正方形挤成十字,再压平。就成了两个重的等腰三角形 第三步;把等腰三角的一个底角挤成一个正方形,其他三角形用此方法做好 第四步;再把挤成的小正方形沿对角线折叠。中间会出现一个小正方形。 第五步;把小正方形上面的角折下来。又出现两个直角。 第六步;再把两个直角折住,然后把剩余的两个直角也折住。 第七步;只要把露出来的两个尖折下来,就大功告成了。
拓展练习
应用拓展1
1.四边形ABCD中,AC=6,BD=8,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去得到四边形AnBnCnDn。
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长。
2. 如图,矩形ABCD的长为4,宽为3,连续取三次中点后的最小四边形的面积为多少?
变式练习
(1)若上题连续取n次中点后的最小四边形AnBnCnDn的面积为多少呢?
(2)若上题改为菱形,边长为4,连续取n次中点后的最小四边形AnBnCnDn的面积为多少呢?
(3)若上题改为正方形,边长为4,连续取n次中点后的最小四边形AnBnCnDn的面积为多少呢?
(4)若以上题目改为求连续取n次中点后的最小四边形AnBnCnDn的周长为多少呢?
应用拓展2
已知:如图,分别以BM、CM为边,向⊿BMC形外作等边三角形ABM、CDM,E、F、G、H分别为AB、BC、CD、DA中点。
猜测四边形EFGH的形状;
证明你的猜想;
(3)三角形BMC形状的改变是否对上述结论有影响?
分析:可以把图形分解成我们所熟悉的图形。
四边形EFGH的形状是由线段AC、BD决定的。
连结AC、BD,⊿AMC与⊿BMD全等。
所以AC=BD,因此四边形EFGH是菱形。
如下图所示,⊿BMC形状的改变对上述结论没有影响。
变式练习1
已知:如图,分别以BM、CM为边,向⊿BMC形外作等腰直角三角形ABM、CDM,E、F、G、H
分别为AB、BC、CD、DA中点。
猜测四边形EFGH的形状;
证明你的猜想;
(3三角形BMC形状的改变是否对上述结论有影响?
变式练习2
已知:如图,分别以AB、AC为边向⊿ABC
形外作正方形ABDE、正方形ACGF,M、N、
P、Q分别是EF、BC、EB、FC的中点。
猜测四边形MPNQ的形状;
试证明你猜想的结论。
(3)⊿ABC形状的改变是否对上述结论有影响?
应用拓展3
如图,四边形ABCD中,
(1)若E、F、G、H分别为各边的中点,则四边形EFGH为平行四边形
(2)若E、F、G、H分别为各边的四等份点,则四边形EFGH为平行四边形
(3)若E、F分别AB、BC边的四等份点,G,H分别为边CD、DA的中点,则四边形EFGH为梯形。
应用拓展4
如图,梯形ABCD中,AB∥CD,M是AD中点,N是BC中点,E是CD中点,F是AB中点。求证:若EF=MN,则BD⊥ME。
变式练习1
求证:若AC=BD,则EF⊥MN;
变式练习2
求证:若AC⊥BD,则EF=MN。
应用拓展5
中点三角形的概念:顺次连结三角形的各边中点所组成的三角形叫做中点三角形。
我们可以得到以下结论:
(1)DE=BC,DF=AC,EF=AB
(2)△ABC∽△DEF
(3)C△DEF=C△ABC
(4)S△DEF=S△ABC
请你模仿上面题目,解答下面的题目:
中点四边形的概念:顺次连结四边形的各边中点所组成的四边形叫做中点四边形。
我们可以得到以下结论:
(1)EF=HG=AC,EH=FG=BD
(2)四边形EFGH是平行四边形
(3)CEFGH=AC+BD
(4)SEFGH=SABCD
拓展(1):中点五边形呢?
拓展(2):中点六边形呢?
拓展(3):中点n边形呢?
第一章 特殊平行四边形
3.正方形的性质与判定(二)
一、学生知识状况分析
学生的知识基础:学生之前已经借助折纸、画图、测量、证明等活动探索过平行四边形、菱形、矩形的性质和判定,还在第一课时学习了正方形的性质,本节课主要是对正方形的判定进行推理证明,而前面的探索过程和方法为本节课的推理证明提供了铺垫,为学生提供了相应的定理证明思路。八年级时学生还学习了“三角形中位线定理”,这些都为本节课探究“中点四边形”做了铺垫,学生已经具备了探究该命题的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生经历了“探索—发现—猜想—证明”的过程,并初步体会了获得猜想后还应予以证明的意义,感受到了合情推理与演绎推理的相互依赖和相互补充的辨证关系,并且学生具有了一定的推理证明的能力。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
教材基于学生对特殊平行四边形和三角形中位线定理的认识的基础之上,提出了本课的具体学习任务:掌握正方形判定定理、理解中点四边形形状取决于原四边形的对角线的位置和数量关系,但这仅仅是这堂课外显的近期目标。
本课内容从属于“图形与几何”中的“图形的性质”,因而务必服务于演绎推理教学的远期目标:“让学生经历‘探索—发现—猜想—证明’的过程,体会证明的必要性,掌握用综合法证明的格式,初步感受公理化思想,发展空间观念”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:
知识与技能:
1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。
2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。
3.使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用。
过程与方法:
1.经历“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。
2.通过凸四边形的中点四边形的探求过程,以及引申至凹四边形的中点四边形的探求过程,引导学生体会证明过程中所运用的由一般到特殊再到一般的归纳、类比、转化的思想方法等,培养积极探索、勇于创新的精神,以及推陈出新的创新能力。
情感与态度:
通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣。
三、教学过程分析
本节课设计了六个教学环节:
第一环节:情景引入;第二环节:运用巩固;第三环节:猜想结论,分组验证;第四环节:学以致用;第五环节:课堂小结;第六环节:布置作业。
第一环节:情景引入
活动内容:
问题:将一张长方形纸对折两次,然后剪下一个角,打开,怎样
剪才能剪出一个正方形?
(学生动手折叠、思考、剪切)
活动目的:
因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形,因此只要保证剪口线与折痕成45°角即可。
活动的注意事项:
部分学生在动手操作时,会剪出菱形,教师要引导学生思考:正方形是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到,而折痕是正方形的对角线,所以本环节要从对角线的角度考虑,即对角线要垂直相等且平分,学生很自然的会想到需要剪一个等腰直角三角形,因此只要保证剪口线与折痕成45°角即可,本节课的第一个教学难点迎刃而解。
本环节中教师可以鼓励操作快的学生帮助有困难的学生,请同学到讲台前讲解自己的做法和判断依据,顺势引导学生总结出正方形的判定定理:
对角线相等的菱形是正方形。
对角线垂直的矩形是正方形。
有一个角是直角的菱形是正方形。
教师可以课件展示下面的框架图,复习巩固平行四边形、矩形、菱形、正方形之间的关系。
此框架图给出了正方形的判别条件,先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形。由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。
第二环节:运用巩固
活动内容:
活动目的:
通过例2,复习巩固平行四边形、菱形、矩形、正方形的性质与判定定理,让学生尝试综合运用特殊四边形的性质和判定解决问题。
活动的注意事项:
此环节采用合作学习的策略,鼓励学生多层面、多角度地思考正方形判定的运用,目的在于加深学生对判定本身的理解和掌握,同时也丰富了交流的内容,激发了交流的气氛,使新旧知识融会贯通,达到同学间的沟通、互补、共同提高的目的,教师应对学生的合理讲解给予肯定和鼓励。而且整个过程也使学生重新回顾了证明的步骤,为进一步发展学生的演绎推理能力奠定了基础。
第三环节:猜想结论,分组验证
活动内容1:
图1-8-1 图1-8-2 图1-8-3
问题:1.如图,在ΔABC中,EF为ΔABC的中位线,
①若∠BEF=30°,则∠A= .
②若EF=8cm, 则AC= .
2.在AC的下方找一点D,做CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?
3.四边形EFGH的形状有什么特征?
活动目的:
通过问题串,复习三角形中位线性质定理和命题“依次连接任意四边形各边的中点可以得到一个平行四边形”。
活动的注意事项:
教师在提问时选择平时学习数学有困难的学生,由于是前面已经学过的知识,学生们回答得很流畅,这种低起点的问题,也增强了学生学习数学的自信心。此外,课件的运用,直观形象,也分解了难点。
活动内容2:
问题:如果四边形ABCD变为特殊的四边形,中点四边形EFGH会有怎样的变化呢?
活动目的:
在一个开放的情景中,引导学生体会由一般到特殊的归纳、类比、转化的思想方法,同时培养学生的积极探索、勇于创新的精神。
活动的注意事项:
有的学生猜测还是平行四边形,有的学生猜测是正方形,有的学生猜测是矩形,有的学生猜测是菱形,甚至有的学生猜测是梯形。经过师生的共同探讨,达成一致的结论:一定是平行四边形,而非梯形。于是老师顺势提出问题“会不会是特殊的平行四边形呢?从结论来探索有一些困难,那么我们可以换一种角度思考:四边形ABCD可以为哪些特殊的四边形?”学生的回答多种多样,原四边形可以为平行四边形、矩形、菱形、正方形、等腰梯形,甚至还有学生回答为梯形和直角梯形。于是老师请学生选择一种自己感兴趣的原四边形来研究中点四边形,从而顺利进入下一环节。
此环节的设置引发了学生对特殊四边形的中点四边形的思考,学生们畅所欲言,互相补充完善,气氛热烈,进一步发展了学生合作交流的能力和数学表达能力,同时也是对之前所学的特殊四边形进行回顾。老师在这一环节中,对学生的回答给予充分的肯定和鼓励,再一次增强了学生学习数学的自信心。
活动内容3:
学生以数学小组的形式,在众多的特殊四边形(平行四边形,矩形,菱形,正方形,等腰梯形,梯形和直角梯形)中选择一种自己感兴趣的原四边形来研究中点四边形,并验证结论的正确性。
活动目的:
由学生非常熟悉的、常见的特殊四边形得到结论,为后面的知识形成作好铺垫,并把学习的主动权让给学生,目的在于激发学生的学习兴趣,使学生真正成为学习的主人;同时让学生再一次体会由一般到特殊的归纳思想、类比、转化的思想方法,进一步提高学生的合作交流和数学表达能力。
活动的注意事项:
学生结合前面学过的各种特殊四边形的判定与性质、三角形中位线定理等知识,人人参与、积极进行探究和交流,通过类比和转化共归纳出以下几种情况。各小组派代表展示自己小组的猜想和验证,讲解中小组之间互相补充、互相竞争,气氛热烈,使验证的过程更加严谨。把学习的主动权交给了学生,真正体现了学生的自主性,也激发了学生学习数学的兴趣。
图1-8-4 图1-8-5 图1-8-6 图1-8-7
图1-8-8 图1-8-9 图1-8-10
得出结论:
平行四边形的中点四边形是平行四边形;
矩形的中点四边形是菱形;
菱形的中点四边形是矩形;
正方形的中点四边形是正方形;
等腰梯形的中点四边形是菱形;
直角梯形的中点四边形是平行四边形;
梯形的中点四边形是平行四边形。
在这一环节中,老师走入学生中适时地进行指导,引导学生进行归纳总结,提高学生的概括能力。对学习能力较弱的学生进行个别指导,对学习能力较强的学生鼓励他们研究第2个甚至更多个图形,使以上7个图形的结论能够顺利得出,并对学生的回答给予充分的肯定和鼓励。学生们展示完自己的结论后,老师利用几何画板进行演示,让学生们观察中点四边形的边和角的变化情况,体会图形运动变化的过程,验证同学们归纳的结论的正确性,给予学生直观的感受。
活动内容4:
问题:1.矩形和等腰梯形是形状不同的四边形,为什么中点四边形都由平行四边形变化为菱形?
2.平行四边形变化为菱形需要增加什么条件?
3.你是从什么角度考虑的?
4.你从哪儿得到的启发?
5.你能用你的发现解释其它的图形变化吗?例如:原四边形为菱形,其中点四边形为矩形?
活动目的:
以问题串的形式引导学生逐步深入思考,前2个问题的设置帮助学生回忆特殊四边形的性质与判定定理,第3、4个问题帮助学生揭示变化的原因:矩形和等腰梯形的对角线有相同的性质“对角线相等”,而且其它中点四边形的变换也和原四边形的对角线有关系。有了前4问的铺设,第5个问题可以通过类比的思想解决;同时让学生体会由一般到特殊再到一般的归纳思想方法,进一步提高学生的数学表达能力。
活动的注意事项:
这一环节紧紧围绕“中点四边形”再次提出问题串,是对上一活动的拓展。通过问题串的解答,使学生对决定中点四边形形状的因素更加明了。教师引导学生对研究的问题归纳总结。
概括出规律:
决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系。
若对角线相等,则中点四边形EFGH为菱形;
若对角线互相垂直,则中点四边形EFGH为矩形;
若对角线既相等,又垂直,则中点四边形EFGH为正方形;
若对角线既不相等,又不垂直,则中点四边形EFGH为平行四边形。
图1-8-11 图1-8-12 图1-8-13 图1-8-14
这里让学生通过归纳,学会把知识整理成一个系统,也就是我们常要求的:教学过程贵在让学生掌握学习的方法,让学生真正地“会学”,既学法指导。这里正是渗透了这种思想。老师再次利用几何画板进行演示,让学生们观察中点四边形的边和角的变化情况,体会图形运动变化的过程,验证同学们归纳的结论的正确性,给予学生们直观的感受。
第四环节:学以致用
活动内容:(图形发散练习)
利用几何画板,拖动A点使四边形ABCD的图形变化进行研究。
图1-8-15 图1-8-16 图1-8-17 图1-8-18
活动目的:
用动画的形式让同学们观察四边形的不断变化过程中,中点四边形的变化情况,体会变化中存在的不变的几何关系:图中几何图形的位置关系处在相互依存的状态之中,静态图形只是动态图形在变化过程中的某一瞬间,意在培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。
在题目的设置上,采用逐步递进的策略,其中图1-8-15是ABCD为凸四边形,图1-8-16是AB、 AD在同一线段上,图1-8-17是ABCD为凹四边形,图1-8-18是ABCD为扭曲四边形。
活动的注意事项:
利用几何画板演示,学生们表现出了极大的学习兴趣,学生们畅所欲言,互相补充完善,课堂气氛异常活跃。经过师生共同探索,得到结论:当ABCD是上面的图形时,四边形EFGH仍为平行四边形。特别是图1-8-18,学生理解有困难,老师引导学生转换思考角度,即四边形EFGH可以看作四边形ADBC的边AD、BC的中点和对角线AB、CD的中点的四边形,这样就解决了问题。老师在这一环节中,对学习能力较弱的学生进行个别指导,对学生的回答给予充分的肯定和鼓励,再一次增强了学生学习数学的自信心。
第五环节:课堂小结
活动内容:
1.本节课重点学习了什么知识,应用了哪些数学思想和方法?
2.通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?
活动目的:
培养学生的归纳能力,使学生形成完整的知识结构,总结研究数学问题的一般方法。
活动的注意事项:
学生们畅所欲言自己的收获,比如:有的学生说:通过这节课我掌握了正方形的判定定理,知道了中点四边形的形状与原四边形对角线有关;有的学生说:通过这节课我了解了类比、转化和归纳概括的数学思想,我要把这些运用到平日的学习和生活中;还有的学生说:通过这节课我发现了数学的美,我更加喜欢数学了;……老师对学生的回答给予充分的肯定和鼓励。
第六环节:布置作业
必做:1.习题1.8(1、3)
2.用所学中点四边形的知识,设计一个基本图形,然后在方格纸内通过平移、旋转或轴对称进行图案设计。
选做:习题1.8(5)
四、教学设计反思
1.要创造性的使用教材
在新教材中,课本只是一个载体,因此,本节课教师充分利用这个载体和学生已有的知识、经验,教学设计不拘泥于教材,由一般到特殊再到一般,符合学生的认知基础和认知规律,体现了新课标的观念,水到渠成,效果非常好。
2.充分利用现代技术,提高课堂容量
本节课容量较大,但由于采用了电脑辅助教学手段,为学生创建了一个学习情境,通过图形的变换,使学生很容易发现问题的规律、找出解决方法,并且学生在老师的启发下,一步一步地探索、归纳、学习,在探索的过程中培养了学生的创新精神和创新意识。
3.注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
课件17张PPT。第一章 特殊平行四边形第3节 正方形的性质与判定(二) 将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形? 第一环节 情景引入 正方形的判定定理:
1.对角线相等的菱形是正方形。
2.对角线垂直的矩形是正方形。
3.有一个角是直角的菱形是正方形。第一环节 情景引入 第一环节 情景引入 第二环节 运用巩固 第三环节 猜想结论,分组验证 1.如图,在ΔABC中,
EF为ΔABC的中位线,
①若∠BEF=30°,
则∠A= .
②若EF=8cm,
则AC= .第三环节 猜想结论,分组验证 2.在AC的下方找一点D, 做CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?3.四边形EFGH的形状有什么特征?
如果四边形ABCD变为特殊的四边形,中点四边形EFGH会有怎样的变化呢? 第三环节 猜想结论,分组验证 特殊四边形的中点四边形:平行四边形的中点四边形是平行四边形菱形的中点四边形是矩形矩形的中点四边形是菱形正方形的中点四边形是正方形第三环节 猜想结论,分组验证 特殊四边形的中点四边形:等腰梯形的中点四边形是菱形直角梯形的中点四边形是平行四边形梯形的中点四边形是平行四边形第三环节 猜想结论,分组验证 归纳:
特殊四边形的中点四边形:
◆平行四边形的中点四边形是平行四边形
◆矩形的中点四边形是菱形
◆菱形的中点四边形是矩形
◆正方形的中点四边形是正方形
◆等腰梯形的中点四边形是菱形
◆直角梯形的中点四边形是平行四边形
◆梯形的中点四边形是平行四边形第三环节 猜想结论,分组验证 问题:
1.矩形和等腰梯形是形状不同的四边形,为什么中点四边形都由平行四边形变化为菱形?
2.平行四边形变化为菱形需要增加什么条件?
3.你是从什么角度考虑的?
4.你从哪儿得到的启发?
5.你能用你的发现解释其它的图形变化吗?
例如:原四边形为菱形,其中点四边形为矩形?
第三环节 猜想结论,分组验证 对角线垂直的四边形的中点四边形是矩形
对角线相等的四边形的中点四边形是菱形对角线既相等又垂直的四边形的中点四边形是正方形
对角线既不相等又不垂直的四边形的中点四边形是平行四边形
第三环节 猜想结论,分组验证 归纳:
一般四边形的中点四边形:
决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系第三环节 猜想结论,分组验证 第四环节 学以致用 ABCD是
凸四边形AB、AD在同一线段上ABCD是
凹四边形ABCD是
扭曲四边形拖动A点使四边形ABCD的图形如上图变化,那么中点四边形EFGH会有怎样的变化呢? 结论:当ABCD是上面的图形时,四边形EFGH仍为平行四边形 图形发散练习第五环节 课堂小结 1.本节课重点学习了什么知识,应用了哪些数学思想和方法?
2.通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?
第六环节 布置作业 必做:
1.习题1.8(1、3)
2.用所学中点四边形的知识,设计一个基本 图形,然后在方格纸内通过平移、旋转或轴对称进行图案设计。
选做:习题1.8(5)