旋转 导学案

文档属性

名称 旋转 导学案
格式 zip
文件大小 1.7MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2014-09-03 17:12:58

图片预览

文档简介

旋转 导学案
学习目标:
1. 理解旋转及对应点的有关概念及其应用
2.旋转性质
情感态度与价值观:激发学生学习兴趣,培养学生学数学、爱数学的意识.
一、课前预习
情景引入:观察图片,感知旋转:
二.探索新知:
1、概念:像这样,把一个平面图形绕着平面 ( http: / / www.21cnjy.com )内某一点O转动一个角度,就叫做图形的 ,点O叫做 ,转动的角叫做 。如果图形上的点B经过旋转变为点D,那么这两个点B和D叫做这个旋转的 。
例如:如图,绕点O旋转45°后得到,
则点B的对应点是___ _;线段OB的对应线段是__ __;
线段AB的对应线段是___ _;∠A的对应角是__ __;
∠B的对应角是____ _;旋转中心是__ _;旋转的角度是______.△AOB的边OB的中点M的对应点在    。
2、性质:如图,△ABC绕着点O,沿逆时针 ( http: / / www.21cnjy.com )方向旋转到△DEF的位置,则旋转中心是_ __ .旋转角是__ ____.点A的对应点是点 ,点B的对应点是点 ,点F的对应点是点 .
试探究下列各题:
(1)线段OA与OD有什么关系?为什么?
(2)∠AOD与∠COF有什么关系?为什么?
(3)△ABC与△DEF有什么关系?为什么?
旋转的性质:
(1)对应点到旋转中心的距离 ;
(2)对应点与旋转中心所连线段的夹角等于 ; (任意一对对应点)
(3)旋转前、后的图形 .
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形。
当堂训练:
1.如图,如果把钟表的指针看做三角形OAB ( http: / / www.21cnjy.com ),它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A、B分别移动______________
2.已知△ABC是直角三角 ( http: / / www.21cnjy.com )形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC绕点C逆时针方向旋转90°后得到△DEC,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE与AB的位置关系为_________________.
3. 如图,正方形ABCD中有一点P, ( http: / / www.21cnjy.com )把△ABP绕点点B旋转到△CQB,连结PQ,则△PBQ的形状是_____________________________.
三、课后作业
1.下列现象中属于旋转的有________________:
①地下水位逐年下降; ②传送带的移动; ③方向盘的转动; ④水龙头的转动; ⑤钟摆的运动; ⑥荡秋千
2. 如图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是 .
3.如图2,把△ABC绕着点C顺时针旋转350,得到△A'B'C,若∠BCA'=1000,则∠B/CA的度数是__________。
4.如图3,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=______°.
5.如图4,O是等边△ABC内一点 ( http: / / www.21cnjy.com ),将△AOB绕A点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为________,图中除△ABC外,还有等边三形是__________.
6.△ABC是等腰直角三角形,BC是斜边,P ( http: / / www.21cnjy.com )是△ABC内一点,将△ABC绕点A逆时针旋转后于△ACQ重合,,如果AP=3,则PQ=__________
7. ①画出△ABC绕点D顺时针旋转90°后的图形△A1B1C1
②△ABC绕点D顺时针旋转后的图形为△A1B1C1,找出旋转中心点D。
8.在Rt△ABO中,∠O ( http: / / www.21cnjy.com )AB=90°,OA=AB=6,将△ABO绕点O逆时针方向旋转90°得到△OA1B1, (1)则线段OA1的长是__________,∠AOB1=_______°
(2)连接AA1,求证四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积?
拓展题:已知正方形ABC ( http: / / www.21cnjy.com )D和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
(2)若将正方形AEFG绕点A按顺时针 ( http: / / www.21cnjy.com )方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
图1
图2
图3
D