【新学期备课参考】2015届北师大版九年级数学上册《6.1 用树状图或表格求概率》同步教学设计+课件+拓展练习资源(9份)

文档属性

名称 【新学期备课参考】2015届北师大版九年级数学上册《6.1 用树状图或表格求概率》同步教学设计+课件+拓展练习资源(9份)
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2014-09-03 20:07:07

文档简介

第六章 概率的进一步认识
6.1 用树状图或表格求概率(一)
一、学生知识状况分析
七年级下学期学生在学习第六章“概率初步”时,已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,了解到事件的概率,体会到概率是描述随机现象的数学模型。本章在此基础上结合具体的情景,让学生经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,进一步让学生体会数学在生活中的价值及发展合作意识。
二、教学任务分析
本课时介绍两种计算概率的方法——树状图和表格法; 要求会借助树状图和表格法计算简单的事件发生概率.为此建立教学目标如下:
1.知识与技能目标:
①进一步理解当试验次数较大时试验频率稳定于概率.
②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.
2.方法与过程目标:
合作探究,培养合作交流的意识和良好思维习惯.
3.情感态度价值观
积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.
教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率.
教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.
三、教学过程分析
本节设计五个教学环节
第一环节:温故而知新,可以为师矣
第二环节:一花独放不是春,百花齐放春满园
第三环节:会当凌绝顶,一览众山小
第四环节:问渠哪得清如许 为有源头活水来
第五环节:学而时习之,不亦乐乎.
第一环节:温故而知新,可以为师矣
问题再现:小明和小凡一起做游戏。在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。
(1)这个游戏对双方公平吗?
(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?
遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。三人决定一起做游戏,谁获胜谁就去看电影。游戏规则如下:
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?)
设计目的:使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同。同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容。
第二环节:一花独放不是春,百花齐放春满园
活动内容:(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:
抛掷的结果
两枚正面朝上
两枚反面朝上
一枚正面朝上、一枚反面朝上
频数
频率
(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。
试验次数
100
200
300
400
500

两枚正面朝上的次数
两枚正面朝上的频率
两枚反面朝上的次数
两枚反面朝上的频率
一枚正面朝上、一枚反面朝上的次数
一枚正面朝上、一枚反面朝上的频率
(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗?
活动体会:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上。一枚反面朝上”发生的概率大于其他两个事件发生的概率。所以,这个游戏不公平,它对小凡比较有利。
深入探究:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?
请将各自的试验数据汇总后,填写下面的表格:
抛掷第一枚硬币
抛掷第二枚硬币
正面朝上的次数
正面朝上的次数
反面朝上的次数
反面朝上的次数
正面朝上的次数
反面朝上的次数
表格中的数据支持你的猜测吗?
探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。
因此,我们可以用下面的树状图或表格表示所有可能出现的结果:
其中,小明获胜的结果有一种:(正,正)。所以小明获胜的概率是;
小颖获胜的结果有一种:(反,反)。所以小颖获胜的概率也是;
小凡获胜的结果有两种:(正,反)(反,正)。所以小凡获胜的概率是。
因此,这个游戏对三人是不公平的。
利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
活动目的:对于随机现象,学生一般都有一些朴素的想法,这些想法有的是正确的,有的是错误的,因此要让学生亲自经历对随机现象的探索过程,亲自经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,以获得事件发生的概率。了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。
第三环节:会当凌绝顶,一览众山小
活动内容1:准备两组相同的牌,每组两张,两张牌的牌面数字
分别是1和2.从每组牌中各摸出一张牌,称为一次试验。
(1)一次试验中两张牌的牌面数字和可能有哪些值?
(2)(同位合作试验)依次统计试验30次、60次、90次的牌面情况,填写下表:
第一张牌的牌面数字
第二张牌的牌面数字
第一张牌的牌面数字为1的次数
第二张牌的牌面数字为1的次数
第二张牌的牌面数字为2的次数
第一张牌的牌面数字为2的次数
第二张牌的牌面数字为1的次数
第二张牌的牌面数字为2的次数
(3)依次统计试验30次、60次、90次时两张牌的牌面数字和分别等于2,3,4的频率,填写下表。
试验次数
30
60
90
两张牌的牌面数字和等于2的频率
两张牌的牌面数字和等于3的频率
两张牌的牌面数字和等于4的频率
(4)你认为两张牌的牌面数字和为多少的概率最大?
(5)请你估计,两张牌的牌面数字和等于3个概率是多少?
(6)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率,验证(5)中你的估计。
解:方法一:(1)一次试验中.两张牌的牌面数字的和等可能的情况有:
1+1=2;1+2=3;2+1=3;2+2=4.
共有四种情况.而和为3的情况有2种,因此,
P(两张牌的牌面数字和等于3)= =.
两张牌的牌面数字的和有四种等可能的情况,而
两张牌的牌面数字和为3的情况有2次,因此.两张
牌的牌面数字的和为3的概率为=.
方法二:两张牌的牌面数字的和有四种等可能的情况,
也可以用树状图来表示而两张牌的牌面数字和为3
的情况有2次,因此.两张牌的牌面数字的和为3
的概率为=.
方法三:通过列表的方式
第二张牌面数字
第一张牌面数字
1
2
1
2
活动内容2:(回归开始的问题类型,加以巩固提升本节课知识)
一个盒子中装有一个红球、一个白球。这些球除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。求:
(1)两次都摸到红球的概率;
(2)两次摸到不同颜色球的概率;
(3)只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。如果是你,你如何选择?
如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法.用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率.在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.
活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件.教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.
第四环节:问渠哪得清如许 为有源头活水来
活动内容:1、本节课你有哪些收获?有何感想?
2、用列表法求概率时应注意什么情况?
活动目的:通过对本节课的小结,加深对本节知识的理解,理解掌握树状图和列表法求理论概率的方法,并熟练应用,同时注意用列表法求概率时应注意各种情况发生的可能性务必相同。
活动效果及注意事项:注意及时发现学生练习中出现的错误,进行讲评,使学生能当堂掌握用树状图和列表法求理论概率.
第五环节:学而时习之,不亦乐乎
(必做题)随堂练习.
(选做题)请同学们课后完成下面练习:
(提升)小明和小颖做掷骰子的游戏,规则如下:① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子;③ 如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
1
2
3
4
5
6
1
2
3
4
5
6
(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
(探究)一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是(  )
A、 B、 C、 D、
【解析】:一次摸两个球,相当于无放回的连续摸两次
∴P(2个球都是红球)= = .故选C。
四、教学反思
注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.
课件17张PPT。第六章 概率的进一步认识6.1 用树状图或表格求概率(一) 七年级在学习第六章
《概率初步》时,我们已
经通过试验、统计等活动
感受随机事件发生的频率
的稳定性即“当试验次数
很大时,事件发生的频率
稳定在相应概率的附近”;
了解到事件的概率,体会
到概率是描述随机现象的
数学模型。
本章我们将对概率做
进一步的研究。 第一环节:温故而知新,可以为师矣。问题再现:
小明和小凡一起做游戏。在
一个装有2个红球和3个白球(每个
球除颜色外都相同)的袋中任意摸
出一个球,摸到红球小明获胜,
摸到白球小凡获胜。
(1)这个游戏对双方公平吗?
(2)如果是你,你会设计一个
什么游戏活动判断胜负?
在一个双人游戏中,你是怎样理解游戏对双方公平的?第一环节:温故而知新,可以为师矣新问题:
小明、小凡和小颖都想去看周末电影,但只有一张电影票。三人决定一起做游戏,谁获胜谁就去看电影。游戏规则如下:
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?
如果不公平,猜猜谁获胜的可能性更大?第二环节:一花独放不是春,百花齐放春满园活动内容:
(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格: 抛掷硬币应注意什么问题?第二环节:一花独放不是春,百花齐放春满园活动内容:
(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。第二环节:一花独放不是春,百花齐放春满园活动内容:
(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗? 想想,我们刚才都经历了哪些过程?你有什么体会?活动体会:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上。一枚反面朝上”发生的概率大于其他两个事件发生的概率。所以,这个游戏不公平,它对小凡比较有利。第二环节:一花独放不是春,百花齐放春满园深入探究:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果?
它们发生的可能性是否一样?
(2)抛掷第二枚硬币可能出现哪些结果?
它们发生的可能性是否一样?
(3)在第一枚硬币正面朝上的情况下,
第二枚硬币可能出现哪些结果?它们发生
可能性是否一样?如果第一枚硬币反面朝
上呢?让我们小组交流一下自己的想法吧!第二环节:一花独放不是春,百花齐放春满园请将各自的试验数据汇总后,填写下面的表格:表格中的数据支持你的猜测吗?第二环节:一花独放不是春,百花齐放春满园探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。因此,我们可以用树状图或表格表示所有可能出现的结果。第二环节:一花独放不是春,百花齐放春满园利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。第三环节:会当凌绝顶,一览众山小活动内容1:
准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验。
(1)一次试验中两张牌的牌面数字和可能有哪些值?
(2)(同位合作试验)依次统计试验30次、60次、90次的牌面情况,填写下表:第三环节:会当凌绝顶,一览众山小(3)依次统计试验30次、60次、90次时两张牌的牌面数字和分别等于2,3,4的频率,填写下表。(4)你认为两张牌的牌面数字和为多少的概率最大?
(5)请估计两张牌的牌面数字和等于3个概率是多少?你会利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率验证(5)中你的估计吗? 活动内容2:一个盒子中装有一个红球、一个白球。这些球除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。求:
(1)两次都摸到红球的概率;
(2)两次摸到不同颜色球的概率; 只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。如果是你,你如何选择?第三环节:会当凌绝顶,一览众山小第四环节:问渠哪得清如许 为有源头活水来1、本节课你有哪些收获?有何感想?
2、用列表法求概率时应注意什么情况?用列表法求随机事件发生的理论概率
(也可借用树状图分析)学会了明白了用列表法求概率时应注意各种情况发生
的可能性务必相同懂得了合作交流的重要性,体会到了一种精神:
就是要勇于暴露自己的思想第五环节:学而时习之,不亦乐乎1.(必做题)随堂练习.
2.(选做题)请同学们课后完成下面练习:
小明和小颖做掷骰子的游戏,规则如下:
① 游戏前,每人选一个数字:
② 每次同时掷两枚均匀骰子;
③ 如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.第五环节:学而时习之,不亦乐乎(探究)一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是(  )
A、 B、 C、 D、 拼图游戏中的概率
记得小的时候,母亲和我经常用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,先抽取一张后,放回搅匀,再抽取第二张.规则如下:
当两张硬纸片上的图形可拼成电灯或小人时,我赢;
当两张硬纸片上的图形可拼成房子或小山时,母亲赢(如图2).
结果总是母亲赢得多,而我赢的少。
问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
第六章 概率的进一步认识
6.1 用树状图或表格求概率(二)
一、学生知识状况分析
学生在七年级已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。本节主要通过对第1课时所做试验进一步分析,体会两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。
二、教学任务分析
教科书基于学生对等可能事件概率的求解和利用树状图、表格求“两步”事件经验的累积,提出本节课的具体学习任务:理解树状图和表格法各自的特点,并能根据不同情境选择适当的方法求比较复杂的事件发生的概率。而更为长远的学习目标应该让本部分知识与实际问题产生联系,凸显数学的实用性。本课《游戏公平吗(二)》内容从属于“统计与概率”这一板块,因而务必服务于统计教学的远期目标:“发展学生对数据的来源、处理数据的方法以及由此得到的结论进行合理质疑的能力,以切实提高学生统计抉择能力。”为此,本节课的教学目标是:
①通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法;
②通过具体情境,感受一件事情公平与否在现实生活中广泛存在,体现数学的价值;
③让学生掌握一定判断事件公平性的方法,提高其决策能力。
三、教学过程分析
本节课设计了五个教学环节:第一环节:温故知新,做好铺垫;第二环节:创设情景,导入课题;第三环节:激发兴趣,探求新知;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
第一环节:温故知新,做好铺垫
提问:上节课,你学会了用什么方法求某个事件发生的概率?
目的:通过学生回答,回想上节课主要内容,为这节课计算概率做好铺垫。
第二环节:创设情景,导入课题
本节是从“石头、剪刀、布”这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率,进而得到判断游戏规则公平与否的依据。本节课提供了多种具体情境,一方面使学生感受概率存在的普遍性,另一方面适应不同的情境,得到概率。
内容(展示例题,引出新课):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.
假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
目的:通过儿时的游戏,激发学生学习新知的兴趣。使学生意识到是比较事件发生的概率,是评判规则公平与否的依据,而求概率的方法即为课前回顾的——树状图和列表法。
实际效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣,能引导学生从问题出发,利用概率解决实际问题。
第三环节:激发兴趣,探求新知
内容:在例题结束后,适时抛出一个类似的情境:
小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?
目的:本环节的设置,开放性更强,让学生在问题中需求解决方案。加强对列表法和树状图求概率的理解,从中也体会本题因为结果较多,使用列表法更好一些,感受两种求概率方式的优劣。
第四环节:巩固基础,检测自我
内容:有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。
目的:随堂练习的给出,使学生适应不同的情境,自主选择合适的方式求事件发生的概率,加强树状图和列表法求概率的熟练程度。进一步,感受概率存在的普遍性,消除对新知的恐惧感。
第五环节:课堂小结,布置作业
课后作业:习题3.2 1.2.3
作业内容重点突出,适合检查学生对本节课的了解。
学法指导
本节课是实用性较强的一节课,选用的情境符合学生的年龄特点和认知水平,使他感受用数学解决问题的幸福。教学中,应鼓励学生自我探究,寻求方法,进行推理,得到判断游戏公平与否的准则。
课件10张PPT。第六章 概率的进一步认识6.1 用树状图或表格求概率(二)
温故知新上节课,你学会了用什么方法求某个事件发生的概率树状图和列表法问题提出 小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:
由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.
假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果: 总共有9种可能的结果,每种结果出现的可能性相同,而两人手势相同的结果有三种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为小明胜小颖的结果有三种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为小颖胜小明的结果也有三种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为所以,这个游戏对三人是公平的.做一做 小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?解:经分析可得,掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大.利用列表法列出所有可能出现的结果:从表格中,能看出和为7出现的次数最多,所以选择7,概率最大! 有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率随堂练习解:可利用列表法列举出所有可能出现的结果:从中发现,这两张恰好能拼成原来的一幅画
的概率布置作业习题3.2 1.2.3 下一个百万富翁就是你?
“下一个百万富翁就是你!”这句响亮的且极具诱惑力的话是彩票的广告词.花上几元钱,买一张彩票,然后就中了几百万乃至上千万的巨额奖金,这大概是很多人梦寐以求的事.可是这样的机会有多大呢?
我们以前段时间比较流行的中国体育福利彩票为例来计算一下.买一注彩票,你只需在0到9的10个数字中任意选取7个,可以重复.在每一期开奖时有一个专门的摇奖机按顺序随机摇出7个标有数字的小球,如果你买的号码与开奖的号码一致,那你就中了特等奖,其奖金最高是500万元.可是,当我们计算这种摇奖方式能产生出多少种不同的情况时,我们会吓一跳:10×10×10×10×10×10×10=10000000种!这就是说,假如你只买了一注彩票,7个号码按顺序与开奖号码完全一致的机会是一千万分之一.一千万分之一是一个什么样的概念呢?如果每星期你坚持花20元买10注彩票,那你在每19230年中有赢得一次大奖的机会;即使每星期坚持花2000元买1000注,也大致需要每192年才有一次中大奖的机会.这几乎是单靠人力所不能完成的,获大奖仅是我们期盼的偶然中的偶然事件.即数学上归为小概率事件之列.
概率理论从赌博中发展而来,又反过来成为赌场老板赚钱的强大工具.进入赌场的人总是相信自己运气十足,孰不知赌场庄家早已利用概率规律为他们设下了陷阱.例如,很多赌场里的老虎机上都顶着跑车,下面写着告示,告诉赌客已经有多少人玩了游戏,车还没送出,暗示现在轮到你的机会大增.但这其实是赌场利用概率规律为赌徒设下的一个诱惑陷阱.概率里有一个重要的规律就是随机事件的独立性,在随机事件中下次事件发生与否与上次事件是没关系的. 但人们通常都对这个规律无知无觉,很多情况下,人们因为前面已经有了大量的未中奖人群而去买彩票或参与到游戏中去.实际上,只要得大奖的规则没有变化,每人是否幸运,和前面的人是否中奖毫无关系,并不会因为前面人没中奖你就多了中奖的机会.庄家在参与赌博时已经设计好了一个有利于自己的概率,而很多玩家却浑然不知.
第六章 概率的进一步认识
6.1 用树状图或表格求概率(三)
一、学生知识状况分析
七年级时学生已经学习了不确定事件及其发生可能性的大小,并且掌握了求一些简单事件的概率的知识,前两个课时我们已经学习了借助于树状图、列表法计算两步随机实验的概率.但是学生对等可能性事件的理解还有待于加强。
二、教学任务分析
进一步经历用树状图、列表法计算随机实验的概率的过程.
教学目标
1.知识与技能目标:
经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.
2.方法与过程目标:
鼓励学生思维的多样性,提高应用所学知识解决问题的能力.
教学重点: 借助于树状图、列表法计算随机事件的概率.
教学难点:在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
三、教学过程分析
本节设计六个教学环节
第一环节:自主学习、感受新知
第二环节:合作交流、探究新知
第三环节:典型例题、应用新知
第四环节:分层提高、完善新知
第五环节:课堂小结、回顾新知
第六环节:作业布置、巩固新知
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;较方便地求出某些事件发生的概率. 用树状图和列表的方法求概率时,应注意各种结果出现能性务必相同.
第一环节:自主学习,感受新知
活动内容:“配紫色”游戏.
活动过程:
游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
活动目的:通过这个转转盘“配紫色”游戏,让学生再次经历利用树状图或列表的方法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同
培养学生应用所学知识解决问题的能力.提高学生分析问题解决问题的能力.
活动效果:学生借助树状图或者列表法表示出所有可能出现的结果,很顺利地求出游戏者获胜的概率。同时在自学过程中也注意到转盘是被分成面积相等的几份扇形,初步感受了每件事情发生的可能性为下一环节的学习打好基础。
第二环节:合作交流,探求新知
游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
小颖做法如下图,并据此求出游戏者获胜的概率为
小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是.
红色
蓝色
红色1
(红1,红)
(红1,蓝)
红色2
(红2,红)
(红2,蓝)
蓝色
(蓝,红)
(蓝,蓝)
你认为谁做得对?说说你的理由.(小组合作交流)
活动目的:让学生先自己画树状图或者表格表示出所有可能出现的结果,然后通过合作交流观察A盘和游戏1转盘的区别并做出正确判断.并总结出求一件事情发生的概率必须是所有可能出现的结果都相同。
活动效果:通过合作交流学生会发现游戏2中A盘中蓝色部分和红色部分的面积不同,因而指针落在这两个区域的可能性不同。学生能指出“小颖的做法不正确,小亮的做法正确.而用列表法或者树状图求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.而小亮的做法把左边转盘中的红色区域等分成2份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色区域”“红色1”“红色2”三个区域的等可能性,因此是正确的”。在这里可以先不抛出小颖和小亮的做法而是让学生自己做然后交流起到了很好的效果。
第三环节:典型例题,应用新知
一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.
分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:
总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种
(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以
P(能配成紫色)=
活动目的:通过典型例题分析进一步让学生体会等可能事件概率的求法,突破了本节课的难点.
活动效果:学生在总结了上述两个游戏的经验和方法,对典型例题的分析更加透彻到位,做起来也就得心应手了.
第四环节:分层提高,完善新知
1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?
2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为
活动目的:通过这两个课堂练习检验学生上课掌握情况,特别是第2个题目有一定难度,在设计时注意指针指向每种颜色的可能性是一样的。
活动效果:学生分层完成课堂练习,保证每一个同学都有所收获,特别是第2题在设计转盘时学生一开始的语言叙述可能不是很严密,经过纠正都能把这个游戏给设计的很好,达到了本堂课的课堂效果.
第五环节:课堂小结,回顾新知
利用树状图和列表法求概率时应注意什么?
你还有哪些收获和疑惑?
第六环节:作业布置,巩固新知
习题3.3第1、2、3题
四、教学反思
1.创造性地使用教材
在处理本堂课时注意让学生先通过自学找出自己不会的地方然后到课堂上通过小组交流的方式解决问题,而不是直接给出答案让学生经历的解决问题的过程提高了学生解决问题的能力。
2.利用几何画板、flash动画辅助教学
本堂课我多次运用到几何画板、flash动画辅助教学使整个课堂清晰、有趣起到了意想不到的效果。
3.小组合作增强学生之间的交流
我在本节课多次用到小组合作的方式进行交流提高了学生的学习效率让学生体会到团结协作的力量是巨大的。
课件15张PPT。第六章 对概率的进一步研究6.1 用树状图或表格求概率(三)游戏1.配紫色游戏小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
红白黄蓝绿A盘 B盘(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?树状图可以是:开始红白黄蓝绿(红,黄)(红,蓝)(红,绿)(白,黄)(白,蓝)(白,绿)黄蓝绿P(游戏获胜)=1/6
表格可以是:黄蓝绿红白(红,黄)(白,黄)(红,蓝)(白,蓝)(红,绿)(白,绿)游戏2.配紫色游戏如果把转盘变成如下图所示的转盘进行“配紫色”游戏.结果又如何小颖制作了下图,并据此求出游戏者获胜的概率是1/2.小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”,“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是1/2.你认为谁做的对?说说你的理由.用树状图和列表的方法求概率时应注意些什么?
议一议各种情况出现的可能性相同 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.典型例题把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:
总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),
所以P(能配成紫色)=4/25
分层提高1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?
2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 1/3课堂小结1.利用树状图和列表法求概率时应注意什么?
2.你还有哪些收获和疑惑?
习题3.3第1、2、3题作业布置象棋比赛阵容
少年宫请来了一位象棋大师,他对少年象棋队的队员们做了一些辅导之后,决定与少年棋手来几盘棋赛。大师的棋艺高出少年棋手好多好多,怎么能比呢?不要紧,大师下的是盲棋——不看棋盘,由别人将对手的走着告诉大师,大师再把自己的走着告诉这个人,由他代走。
比赛作了这样的约定:由少年象棋队挑出两名队员,轮流与大师赛棋,共赛三盘。如果能连胜大师两盘,就算少年棋队胜。注意:是连胜两盘,不是共胜两盘。
假定少年棋手甲能胜大师的概率是0.75,乙能胜大师的概率是0.5,那么少年棋队应该用“甲—乙—甲”,还是用“乙—甲—乙”的阵容来对付大师呢?
“当然用‘甲—乙—甲’阵容啦!甲是我队最好的队员嘛!”少年棋队的队员们一致这样看。
其实,“甲—乙—甲”阵容战胜大师(连胜两盘)的概率比“乙—甲—乙”阵容战胜大师的概率要小一些。
为什么呢?我们在这里只做一些直观的解释。
用“甲—乙—甲”阵容参战,最佳的棋手可以上场两次,看来好像是有利的。但是,我们现在的规则是:连胜两盘才能算少年队赢。用这个阵容,即使甲胜了两盘,也没用,因为不是“连胜”两盘。
要连胜两盘,必须在第二盘比赛中取胜,因此第二盘比赛是关键。而“乙—甲—乙”阵容,就是把最佳选手安排在最关键的场合,所以是较好的方案。