【倍速课时学练】(2014秋开学)沪科版九年级数学上册212 二次函数的图象和性质 课件(3份)

文档属性

名称 【倍速课时学练】(2014秋开学)沪科版九年级数学上册212 二次函数的图象和性质 课件(3份)
格式 zip
文件大小 2.6MB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2014-09-04 19:12:26

文档简介

课件20张PPT。21.2 二次函数的图象和性质
第1课时
学习目标1、会用描点法画二次函数y=x2和y=-x2的图象;2、根据函数y=x2和y=-x2的图象,直观地了解它的性质.你想直观地了解它的性质吗?数形结合,直观感受在二次函数y=x2中,y随x的变化而变化的规律是什么?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:你会用描点法画二次函数y=x2的图象吗?描点,连线y=x2观察图象,回答问题串(1)你能描述图象的形状吗?与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象 与x轴有交点吗?如果有,交点坐标是什么?(4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?这条抛物线关于
y轴对称,y轴就
是它的对称轴. 对称轴与抛物
线的交点叫做
抛物线的顶点.二次函数y=x2的
图象形如物体抛射
时所经过的路线,我
们把它叫做抛物线.当x<0 (在对称轴的
左侧)时,y随着x的增大而
减小. 当x>0 (在对称轴的
右侧)时, y随着x的增大而
增大. 抛物线y=x2在x轴的
上方(除顶点外),顶点
是它的最低点,开口
向上,并且向上无限
伸展;当x=0时,函数y
的值最小,最小值是0.在学中做—在做中学(1)二次函数y=-x2的图象是什么形状?你能根据表格中的数据作出猜想吗?(2)先想一想,然后作出它的图象.(3)它与二次函数y=x2的图象有什么关系?xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x2观察图象,回答问题串(1)你能描述图象的形状吗?与同伴进行交流.(2)图象 与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.y=-x2描点,连线这条抛物线关于
y轴对称,y轴就
是它的对称轴. 对称轴与抛物
线的交点叫做
抛物线的顶点.二次函数y= -x2的
图象形如物体抛射
时所经过的路线,我
们把它叫做抛物线.y当x<0 (在对称轴的
左侧)时,y随着x的增大而
增大. 当x>0 (在对称轴
的右侧)时, y随着
x的增大而减小. y抛物线y= -x2在x轴的
下方(除顶点外),顶点
是它的最高点,开口
向下,并且向下无限
伸展;当x=0时,函数y
的值最大,最大值是0.看图说话函数y=ax2(a≠0)的图象和性质:y=x2y=-x2它们之间有何关系?二次函数y=ax2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y= -x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:y=x2和y=-x2是y=ax2当a=±1时的特殊例子.a的符号确定着抛物线的……函数y=ax2(a≠0)的图象和性质:在同一坐标系中作出函数y=x2和y=-x2的图象看图说话y=x2y=-x21.抛物线y=ax2的顶点是原点,对称轴是y轴.2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质我思,我进步1.已知抛物线y=ax2经过点A(-2,-8).
(1)求此抛物线的函数表达式;
(2)判断点B(-1,- 4)是否在此抛物线上.
(3)求出此抛物线上纵坐标为-6的点的坐标.解(1)把(-2,-8)代入y=ax2,得 -8=a(-2)2,
解得a= -2,所求函数表达式为y= -2x2.知道就做别客气2.填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外).(2)抛物线 在x轴的 方(除顶点外),在对称轴的
左侧,y随着x的 ;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是 ,
当x 0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小0回味无穷2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;
在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;
在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.1.抛物线y=ax2的顶点是原点,对称轴是y轴.由二次函数y=x2和y=-x2知:习题1.说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状.2.设正方形的边长为,面积为,试作出S随a的变化而变化的图象.课件11张PPT。21.2 二次函数图象和性质
第2课时生活中的抛物线 生活中的抛物线 画出函数:
y= x2 y=x2+1 y=x2-1的图象 y=x2+1开口向上,对称轴为y轴,顶点是(0、1)。
y=x2-1开口向上,对称轴为y轴,顶点是(0、-1)。 向下x=-1(-1,0)向下x=1(1,0)函数y=a(x-h)2+k的特点:
1、a>0时,开口向上;a<0时,开口向下;
2、对称轴是直线x=h;
3、顶点坐标是(h,k). 你知道哪些地方用到了抛物线。 你知道哪些地方用到了抛物线。 你知道哪些地方用到了抛物线。 课件12张PPT。21.2二次函数的图象和性质(第3课时) 我们来画 的图象,并讨论一般地怎样画
二次函数 的图象.接下来,利用图象的对称性列表(请填表)33.557.53.557.5配方可得由此可知,抛物线 的顶点是(6,3),对称轴是直线 x = 6因此,抛物线 的对称轴是 顶点
坐标是一般地,我们可以用配方求抛物线 y = ax2 + bx + c (a≠0)的顶点与对称轴矩形场地的周长是60m,一边长为l,则另一边长为 ,场地的面积用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长 l 的变化而变化,当 l 是多少时,场地的面积S最大?即 可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数的图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值.由公式可求出顶点的横坐标.分析:先写出S与 l 的函数关系式,再求出使S最大的l值.S=l ( 30-l )S=-l 2 +30l( 0 < l < 30 )也就是说, 当l是15m时,场地的面积S最大(S=225m2) 因此,当 时,S=-l 2 +30l( 0 < l < 30 ) 一般地,因为抛物线 的顶点是最低(高)点,
所以当 时,二次函数
有最小(大)值1.写出下列抛物线的开口方向、对称轴及顶点坐标.当x为何值时y的值最小(大)?(4)(3)(2)(1)练习解: (1) a = 3 > 0抛物线开口向上解: a = -1 < 0抛物线开口向下(2)解: a = -2 < 0抛物线开口向下(3)解: a = 0.5 > 0抛物线开口向上(4)2.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?