10.2+事件的相互独立性 学案(无答案)

文档属性

名称 10.2+事件的相互独立性 学案(无答案)
格式 docx
文件大小 175.3KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-06-06 07:58:29

图片预览

文档简介

10.2 事件的相互独立性
【教学目标】
1.在具体情境中,了解两个事件相互独立的概念.
2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.
【自主学习】
1.相互独立的概念
设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.
2.相互独立的性质
若事件A与B相互独立,那么A与,与B,与也都相互独立.
【课内探究】
例1. 判断下列事件是否为相互独立事件.
(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.
(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.
例2. 王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率.
例3. 本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租用时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,,超过两小时但不超过三小时还车的概率分别为,,两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设ξ为甲、乙两人所付的租车费用之和,求P(ξ=4)和P(ξ=6)的值.
【当堂检测】
一、单选题
1.甲、乙两人下棋,甲获胜的概率为30%,两人下成和棋的概率为50%,那么乙不输的概率是( )
A.20% B.70% C.80% D.30%
2.抛掷两枚均匀的骰子,记录正面朝上的点数,则下列选项的两个事件中,互斥但不对立的是( )
A.事件“点数之和为奇数”与事件“点数之和为9”
B.事件“点数之和为偶数”与事件“点数之和为奇数”
C.事件“点数之和为6”与事件“点数之和为9”
D.事件“点数之和不小于9”与事件“点数之和小于等于8”
3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A. B. C. D.
4.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有不会感染这种病毒,若有人接种了这种疫苗,则最多人被感染的概率为( )
A. B. C. D.
5.高一年级某同学为了丰富自己的课外活动,参加了学校“文学社”“咏春社”“音乐社”三个社团的选拔,该同学能否成功进入这三个社团是相互独立.假设该同学能够进入“文学社”“咏春社”“音乐社”三个社团的概率分别为、、,该同学可以进入两个社团的概率为,且三个社团都进不了的概率为,则( )
A. B. C. D.
6.对于一个古典概型的样本空间和事件A,B,C,D,其中,,,,,,,,则( )
A.A与B不互斥 B.A与D互斥但不对立
C.C与D互斥 D.A与C相互独立
二、多选题
7.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是( )
A.2个球都是红球的概率为 B.2个球中恰有1个红球的概率为
C.至少有1个红球的概率为 D.2个球不都是红球的概率为
8.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以事件,和表示从甲罐取出的球是红球,白球和黑球;再从乙罐中随机取出一球,以事件B表示从乙罐取出的球是红球,则下列结论中正确的是( )
A.事件B与事件相互独立 B.,,是两两互斥的事件
C. D.
三、填空题
9.现有语文、数学、英语、物理和化学共5本书,从中任取1本,记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则事件取出的是理科书可记为____.
10.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
11.某射手每次射击击中目标的概率均为0.6,该名射手至少需要射击___次才能使目标被击中的概率超过0.999,(参考数据:,)
12.甲乙丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.则n次传球后球在甲手中的概率______.
四、解答题
13.某公司职员外出参加培训的活动中,一周内派出的职员人数及其概率如下表所示:
派出人数 3 4 5
概率 0.1 0.44 0.2 0.2 0.06
(1)求有4人或5人外出培训的概率;
(2)求至少有3人外出培训的概率.
14.某工厂生产一种汽车的元件,该元件是经过、、三道工序加工而成的,、、三道工序加工的元件合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.
(1)生产一个元件,分别求该元件为一等品和二等品的概率;
(2)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.
15.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(1)求甲和乙先赛且共进行4场比赛的概率;
(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?
16.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下面的框图所示,其中编号为的方框表示第场比赛,方框中是进行该场比赛的两名棋手,第场比赛的胜者称为“胜者”,负者称为“负者”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为 ,而乙、丙、丁相互之间胜负的可能性相同.
(Ⅰ)求甲获得冠军的概率;
(Ⅱ)求乙进入决赛,且乙与其决赛对手是第二次相遇的概率.