【2014年秋备课】高中化学 12 原子结构与元素的性质(课件+教案+学案)(打包3套)新人教版选修3

文档属性

名称 【2014年秋备课】高中化学 12 原子结构与元素的性质(课件+教案+学案)(打包3套)新人教版选修3
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 化学
更新时间 2014-09-12 20:12:43

文档简介

原子结构与元素的性质
(第1课时)
【学习目标】
1. 进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系
2. 知道外围电子排布和价电子层的涵义
3. 认识周期表中各区、周期、族元素的原子核外电子排布的规律
4. 知道周期表中各区、周期、族元素的原子结构和位置间的关系
【自主梳理】
1. 元素周期表中的周期是指 ;元素周期表中的族是指
2. ,叫做元素周期律,在化学(必修2)中元素周期律主要体现在 、 、 、 等的周期性变化。
3.什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?
4.原子结构与周期表
完成下表:
元素名称
原子序数
周期
简化电子排布式
元素名称
原子序数
周期
简化电子排布式










【重点领悟】
1. 进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系;
知道外围电子排布和价电子层的涵义;
认识周期表中各区、周期、族元素的原子核外电子排布的规律;
知道周期表中各区、周期、族元素的原子结构和位置间的关系。
【阅读思考】阅读教材P13-14,元素周期表与原子结构有什么关系
【科学探究】教材P14 考察(观察)元素周期表,探究下列问题:
1.元素周期表共有几个周期?每个周期各有多少种元素?写出每个周期开头第一个元素和结尾元素的最外层电子的排布式的通式。为什么第一周期结尾元素的电子排布跟其他周期不同?
2.元素周期表共有多少个纵列?周期表上元素的“外围电子排布”简称“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化。每个纵列的价电子层的电子总数是否相等?
3.按电子排布,可把周期表里的元素划分成5个区,课本图1-16所示。除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。s区、d区和p区分别有几个纵列?为什么s区(H除外)、d区和ds区的元素都是金属?
4.元素周期表可分为哪些族?为什么副族元素又称为过渡元素?
5.为什么在元素周期表中非金属主要集中在右上角三角区内?
6.处于非金属三角区边缘的元素常被称为半金属或准金属。为什么?
【归纳】S区元素价电子特征排布为 ,价电子数等于族序数。d区元素价电子排布特征为 ;价电子总数等于副族序数;ds区元素特征电子排布为 ,价电子总数等于所在的列序数;p区元素特征电子排布为 ;价电子总数等于主族序数。
原子结构与元素在周期表中的位置是有一定的关系的。
1. 原子核外电子总数决定所在周期数
周期数= (钯除外)46Pd [Kr]4d10,最大能层数是4,但是在第五周期。
2.外围电子总数决定排在哪一族 如:29Cu 3d104s1 ,10+1=11尾数是1所以,是IB。
元素周期表是元素原子结构以及递变规律的具体体现。
【思考】元素在周期表中排布在哪个横行,由什么决定?元素在周期表中排在哪个列由什么决定?
(分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。)
【学与问】1.元素周期表中,同周期的主族元素从左到右,最高化合价和最低化合价、金属性和非金属性的变化有什么规律?
2.元素周期表中的同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?周期表中的同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?
【巩固练习】
1.外围电子构型为4f75d16s2元素在周期表中的位置是 (? ? )
A? 四周期ⅦB族 B? 五周期ⅢB族 C? 六周期ⅦB族 D? 六周期ⅢB族
2. 原子序数小于18的八种连号元素,它们单质的熔点随原子序数增大而变化的趋势如图所示。图中X元素应属( )
A ⅢA族 B ⅣA族 C ⅤA族 D ⅥA族
3.某周期ⅡA族元素的原子序数为x,则同周期的Ⅲ族元素的原子序数是( )
A 只有x+1 B 可能是x+8或x+18
C 可能是x+2 D 可能是x+1或x+11或x+25
4.下列各组元素性质递变情况错误的是( )
A Li、Be、B原子最外层电子数依次增多 B P、S、Cl元素最高正化合价依次升高
C N、O、F原子半径依次增大 D Na、K、Rb的金属性依次增强
5. 外围电子构型为4f75d16s2元素在周期表中的位置是 (? ? )
A、第四周期ⅦB族 B、第五周期ⅢB族 C、?第六周期ⅦB族 D、?第六周期ⅢB族
6. 镭是元素周期表中第七周期的ⅡA族元素。下面关于镭的性质的描述中不正确的是( )
A. 在化合物中呈+2价 B.单质使水分解.放出氢气
C. 氢氧化物呈两性 D. 碳酸盐难溶于水
7.元素的分区和族 1) s 区: , 最后的电子填在 上, 包括 , 属于活泼金属, 为碱金属和碱土金属; 2) p区:, 最后的电子填在 上, 包括 族元素, 为非金属和少数金属; 3) d区: , 最后的电子填在 上, 包括 族元素, 为过渡金属; 4) ds区: , (n-1)d全充满, 最后的电子填在 上, 包括 , 过渡金属(d和ds区金属合起来,为过渡金属); 5) f区: , 包括 元素, 称为内过渡元素或内过渡系.
疑点反馈:(通过本课学习、作业后你还有哪些没有搞懂的知识,请记录下来)
参考答案:
1 D 2 B 3 D 4 C 5. D 6.BD
7. 1)ns,IA、IIA 2)np,IIIA-VIIA 以及0 3)(n-1)d,IA、IIA 4)ns,IB-IIB
《选修三第一章第二节 原子结构与元素的性质》导学案
(第2课时)
【学习目标】
1、掌握原子半径的变化规律
2、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质
3、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系
4、认识主族元素电离能的变化与核外电子排布的关系
5、认识原子结构与元素周期系的关系,了解元素周期系的应用价值
[自主梳理]1.我们知道元素性质是由元素原子结构决定的,那具体影响哪些性质呢?
2.教材P16元素周期表中,同周期的主族元素从左到右,最高化合价和最低化合价、金属性和非金属性的变化规律是什么?
3.观察教材P17图1-20表分析总结
1. 元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?
2. 元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?
3.粒子半径大小的比较有什么规律呢?
【重点领悟】
1、掌握原子半径的变化规律
2、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质
3、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系
4、认识主族元素电离能的变化与核外电子排布的关系
5、认识原子结构与元素周期系的关系,了解元素周期系的应用价值
【探究学习】一、阅读P17电离能,电离能是反映元素的另一个什么性质?
二、教材P18 1.碱金属的电离能与碱金属的活泼性存在什么联系?
2.为什么原子的逐级电离能越来越大?Na、Mg、Al的电离能数据跟它们的化合价有什么联系?
3.原子的第一电离能随核电荷数递增有什么变化规律呢? 请分析P18图1—21
[思考与交流]1. 观察p18图1-21, Be的第一电离能大于B,N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga?
2.结合已学知识电离能有哪些主要应用?
【巩固训练】
1.下列说法正确的是( )
A.第3周期所含的元素中钠的第一电离能最小 B.铝的第一电离能比镁的第一电离能大
C.在所有元素中,氟的电离能最大 D.钾的第一电离能比镁的第一电离能大
2、下列原子的价电子排布中,对应于第一电离能最大的是( )
A、ns2np1 B、ns2np2 C、ns2np3 D、ns2np4
3.能够证明电子在核外是分层排布的事实是( )
A、电负性 B、电离能 C、电子亲和能 D、电势能
4、下表是元素周期表的一部分,表中所列的字母分别代表某一化学元素
(1)下列 (填写编号)组元素的单质可能都是电的良导体。
①a、c、h ②b、g、k ③c、h、l ④d、e、f
(2)如果给核外电子足够的能量,这些电子便会摆脱原子核的束缚而离去。核外电子离开该原子或离子所需要的能量主要受两大因素的影响。
原子核失去核外不同电子所需的能量(KJ·mol-1)

X
Y
失去第一个电子
519
502
580
失去第二个电子
7 296
4 570
1 820
失去第三个电子
11 799
6 920
2 750
失去第四个电子
9 550
11 600
①通过上述信息和表中的数据分析,为什么锂原子失去核外第二个电子时所需的能量要远远大于失去第一个电子所需的能量 。
②表中X可能为13种元素中的 (填写字母)元素。用元素符号表示X和j形成的化合物的化学式       。
③Y是周期表中 族的元素的增加,I1逐渐增大。
④以上13种元素中, (填写字母)元素原子失去核外第一个电子需要的能量最多。
 .疑点反馈:(通过本课学习、作业后你还有哪些没有搞懂的知识,请记录下来)
_____________________________________________________________________
答案1.A 2、 C 3.B 4、 答案:(1)①④ (2)①Li原子失去1个电子后形成稳定结构,再失去1个电子很困难 ②a;Na2O 或Na2O2 ③ⅢA ④ m
《选修三第一章第二节 原子结构与元素的性质》导学案 (第3课时)
【学习目标】1、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质
2、能根据元素的电负性资料,解释元素的“对角线”规则。
3、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质
4、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力
[自主梳理]1.什么是电离能?它与元素的金属性、非金属性有什么关系?
2.同周期元素、同主族元素的电离能变化有什么规律?
3.什么是化学键(必修2 P23)?
【重点领悟】1、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质
2、能根据元素的电负性资料,解释元素的“对角线”规则。
3、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质
4、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力
【讨论学习】阅读教材p19-20, 什么是电负性?电负性的大小体现了什么性质?
(1) 键合电子: 孤电子:
(2)定义:
(3)意义:
[思考与交流]阅读教材P19图1-23
1.同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?
2.根据已学知识,说说元素电负性的主要应用有哪些?
 元素的电负性与元素的金属性和非金属性的关系______________________
 电负性与化合价的关系__________________________
③判断化学键的类型______________________
【科学探究】教材P20
1.课本图1-26是用课本图1-23的数据制作的第三周期元素的电负性变化图,请用类似的方法制作第ⅠA和ⅦA族元素的电负性变化图。
2.在元素周期表中,某些主族元素与右下方的主族元素(如下图)的有些性质是相似的(如硼和硅的含氧酸盐都能形成玻璃且互熔),被称为“对角线规则”。查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。
【归纳与总结】
1. 金属元素越容易失电子,对键合电子的吸引能力越 ,电负性越小,其金属性越 ;非金属元素越容易得电子,对键合电子的吸引能力越 ,电负性越 ,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变 ;周期表从上到下,元素的电负性逐渐变 。
2. 同周期元素从左往右,电负性逐渐增 ,表明金属性逐渐减弱,非金属性逐渐增 。同主族元素从上往下,电负性逐渐减 ,表明元素的金属性逐渐减弱,非金属性逐渐增强。
【思考】对角线规则:某些主族元素与右下方的主族元素的有些性质相似,被称为对角线原则。请查阅电负性表给出相应的解释?
3. 在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。
4. 对角线规则
【当堂巩固】1.下列有关电负性的说法中正确的是( )
A.主族元素的电负性越大,元素原子的第一电离能一定越大。
B.在元素周期表中,元素电负性从左到右越来越大
C.金属元素电负性一定小于非金属元素电负性。
D.在形成化合物时,电负性越小的元素越容易显示正价
2.能够证明电子在核外是分层排布的事实是( )
A、电负性 B、电离能 C、电子亲和能 D、电势能
3.不同元素的原子在分子内吸引电子的能力大小可用一数值x来表示,若x越大,则原子吸引电子的能力越强,在所形成的分子中成为负电荷一方。下面是某些短周期元素的x值:
元素
Li
Be
B
C
O
F
x值
0.98
1.57
2.04
2.53
3.44
3.98
元素
Na
Al
Si
P
S
Cl
x值
0.93
1.61
1.90
2.19
2.58
3.16
(1)通过分析x值的变化规律,确定N、Mg的x值范围:
______(2)推测x值与原子半径的关系是_______________________________________________。
(3)某有机物结构式为:,在S—N中,你认为共用电子对偏向谁?__________(写原子名称)。
(4)经验规律告诉我们当成键的两原子相应元素电负性的差值Δx>1.7时,一般为离子键,当Δx<1.7时,一般为共价键,试推断AlBr3中化学键的类型是____________。
(5)预测元素周期表中,x值最小的元素位置____________(放射性元素除外)。
4.有A、B、C、D四种元素。其中A为第三周期元素,与D可形成1∶1和2∶1原子比的化合物。B为第四周期d区元素,最高化合价为7。C和B是同周期的元素,具有相同的最高化合价。D为元素周期表所有元素中电负性第二大的元素。试写出四种元素的元素符号和名称,并按电负性由大到小排列顺序。A________,B__________,C________________,D________,电负性由大到小的顺序为__________________________________________________。
答案 1.D 2 .B 3.(1)0.93 1.57 2.53 3.44 (2)x值越小,半径越大 (3)氮 (4)共价键 (5)第六周期ⅠA族
4.答案 钠(Na) 锰(Mn) 溴(Br) 氧(O) O>Br>Mn>Na
疑点反馈:(通过本课学习、作业后你还有哪些没有搞懂的知识,请记录下来)
_____________________________________________________________________
_____________________________________________________________________
原子结构与元素的性质
教材分析:
第二节“原子结构与元素的性质”,首先由原子核外电子排布的变化规律引出元素周期系,接着介绍了元素周期表,由于学生对元素周期表的结构已有一定的了解,为了避免重复,教科书设计了一个“科学探究”,要求学生从更高的视角来进一步认识元素周期表的结构;元素周期律的内涵比较广泛,教科书重点讨论了原子半径、电离能和电负性的周期性变化,而对于学生已知同周期的主族元素的最高化合价和最低化合价、金属性和非金属性的周期性变化,教科书设计了一个“学与问”;在本节的最后设计了一个“科学探究”,结合元素周期表与元素的电负性简单介绍了对角线规则。本节在呈现方式上,充分体现了学生自主学习,设计了两个“科学探究”和三个“学与问”,以及两个“科学史话”;另外,教科书还使用了多样化的图表。
除学科知识外,本章内容的选取也注意了对学生进行科学方法、科学态度的教育,如“科学史话”中提供的素材,既有利于对学生进行科学方法、科学态度的教育,也有利于激发学生的学习兴趣。
教学设计
本节内容分为两部分:第一部分在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。第二部分在复习元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性周期性变化的基础上,进一步从原子半径、电离能以及电负性等方面探究元素性质的周期性变化规律。教学过程中应注意帮助学生根据元素原子核外电子排布特点,以及从原子半径、电离能及电负性等方面加深对元素周期律、元素周期表及元素“位—构—性”三者关系的理解。
第二节 原子结构与元素的性质
第一课时
一、教学目标
1. 知识与技能:(1)了解元素原子核外电子排布的周期性变化规律;(2)了解元素周期表的结构;(3)了解元素周期表与原子结构的关系。
2. 过程与方法:通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──逻辑推理法、抽象思维法、总结归纳法。
3. 情感态度与价值观:学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。
二、教学重点:
1. 原子核外电子排布的周期性变化
2. 原子结构与元素周期表的关系
三、教学难点:
元素周期表的结构与原子结构的关系
四、教学方法
复习法、延伸归纳法、讨论法、引导分析法
五、教学过程
【复习引入】
什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?
【生】 元素的性质随核电荷数递增发生周期性的递变。
元素的性质包括:金属性、非金属性、原子半径……
元素性质周期性变化的根本原因是:原子电子排布的周期性变化
【师】不错,说到底元素的性质是由原子结构所决定的,今天,我们将进一步探究原子结构与元素性质的关系。
【板书】第二节 原子结构与元素的性质
元素的性质跟其在周期表中的位置有相应的关系,所以要探究原子结构与元素的性质的关系首先得研究元素周期表。在必修2中我们已经对元素周期表做过探究,请同学们结合P15-16页『科学探究』内容回忆元素周期表的结构的相关知识。
【板书】一、原子结构与元素周期表
【科学探究】P15-16
【学生思考、讨论、回答】
【小结】
1. 元素周期表共有7个周期,其中有三个短周期,三个长周期和一个不完全周期。每周期具有元素的数目分别为2、8、8、18、18、32、26种。
一、1s1——1s2 二、2s1——2s22p6 三、3s1——3s23p6 四、4s1 ——4s24p6
五、5s1 ——5s25p6 六、6s1——6s26p6 七、7s1——?
通式:ns1——ns2np6
第一周期结尾元素只有一个1s能级,2个电子,所以电子排布跟其他周期不同
2. 元素周期表共有18个纵列,
【板书】
1. 价电子层:能级上的电子数可在化学反应中发生变化的能层。
2. 价电子:价电子层上的电子。
3. 每个纵列的价电子层的电子总数相等
3. s区有2个纵列,d区有8个纵列,P区有6个纵列;从元素的价电子层结构可以看出,s区、d区、ds区的元素在发生化学反应时容易失去最外层电子及倒数第二层的d电子,呈现金属性,所以s区、d区、ds区都是金属。
【归纳】
S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为
(n-1)d1~10ns1~2;价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。
4. 元素周期表可分为主族、副族和0族:从图1—16可知,副族元素(包括d区和ds 区的元素)介于s区元素(主要是金属元素)和p区(主要是非金属元素)之间,处于由金属元素向非金属元素过渡的区域,因此把副族元素又称为过渡元素。
5. 这是由元素的价电子层结构和元素周期表中性质递变规律决定的,在元素周期表中,同周期元素从左到右非金属性逐渐增强,金属性逐渐减弱,同主族元素从上到下非金属性逐渐减弱,金属性逐渐增强,结果使元素周期表右上角三角区域的元素主要呈现出非金属性。
6. 由于元素的金属性和非金属性之间并没有严格的界线,处于非金属三角区边缘的元素既能表现出一定的非金属性,又能表现出一定的金属性,因此,这些元素常被称为半金属或准金属。
【思考】元素在周期表中排布在哪个横行,由什么决定?元素在周期表中排在哪个列由什么决定?
(分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。)
【板书】4. 元素在周期表中的位置由原子结构决定:
(1)原子核外电子层数决定元素所在的周期;周期数=最大能层数(钯除外)46Pd [Kr]4d10,最大能层数是4,但是在第五周期。
(2)原子的价电子总数决定元素所在的族;如:29Cu 3d104s1 ,10+1=11尾数是1所以,是IB。
总结:元素周期表是元素原子结构以及递变规律的具体体现。
【过渡】由于随核电荷数的递增,电子在能级里的填充顺序遵循构造原理,元素周期系的周期不是单调的,每一周期里元素的数目并不总是一样多,而是随周期序号的递增渐渐增多,同时,金属元素的数目也逐渐增多,(关系见P14)
因此我们可以把元素周期表画成螺旋型的形状。见P15 图 1——15。
【练习】
1.下列元素是主族元素还是副族元素?第几周期?第几族?
(1)1s2 2s2 2p6 3s2 3p5
(2)[Ar]3d10 4s1
2.由下列元素在周期表中的位置,给出其原子的价电子层构型
(3)第四周期第ⅥB族
(4)第六周期第ⅡA族
3.已知某元素的原子序数是25,写出该元素原子的电子排布式,并指出该元素的名称、符号以及所属的周期和族。
4.已知某元素在周期表中位于第五周期、ⅥA族。试写出该元素的基态原子的电子排布式、元素名称、符号和原子序数。
5、下表是元素周期表的一部分,表中所列的字母分别代表某一化学元素
(1)下列 (填写编号)组元素的单质可能都是电的良导体。
①a、c、h ②b、g、k ③c、h、l ④d、e、f
(2)如果给核外电子足够的能量,这些电子便会摆脱原子核的束缚而离去。核外电子离开该原子或离子所需要的能量主要受两大因素的影响。
原子核失去核外不同电子所需的能量(KJ·mol-1)

X
Y
失去第一个电子
519
502
580
失去第二个电子
7 296
4 570
1 820
失去第三个电子
11 799
6 920
2 750
失去第四个电子
9 550
11 600
①通过上述信息和表中的数据分析,为什么锂原子失去核外第二个电子时所需的能量要远远大于失去第一个电子所需的能量 。
②表中X可能为13种元素中的 (填写字母)元素。用元素符号表示X和j形成的化合物的化学式       。
③Y是周期表中 族的元素的增加,I1逐渐增大。
④以上13种元素中, (填写字母)元素原子失去核外第一个电子需要的能量最多。
答案:(1)①④ (2)①Li原子失去1个电子后形成稳定结构,再失去1个电子很困难 ②a;Na2O 或Na2O2 ③ⅢA ④ m
【板书设计】
一、原子结构与元素周期表
1.价电子层:能级上的电子数可在化学反应中发生变化的能层。
2.价电子:价电子层上的电子。
3.每个纵列的价电子层的电子总数相等
4.元素在周期表中的位置由原子结构决定:
(1)原子核外电子层数决定元素所在的周期;周期数=最大能层数(钯除外)46Pd [Kr]4d10,最大能层数是4,但是在第五周期。
(2)原子的价电子总数决定元素所在的族;如:29Cu 3d104s1 ,10+1=11尾数是1所以,是IB。
总结:元素周期表是元素原子结构以及递变规律的具体体现。
第二课时
知识与技能
1、掌握原子半径的变化规律
2、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质
3、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系
4、认识主族元素电离能的变化与核外电子排布的关系
5、认识原子结构与元素周期系的关系,了解元素周期系的应用价值
能力与方法
复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。
情感与态度
重点
电离能得定义及与原子结构之间的关系
难点
电离能得定义及与原子结构之间的关系
知识结构与板书设计
二、元素周期律
1、原子半径
2、电离能
(1)定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能.
①常用符号I表示,单位为KJ?mol-1
②意义:通常用电离能来表示原子或离子失去电子的难易程度。
(2)元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。
(3) 电离能的应用
教学过程
[引入]我们知道元素性质是由元素原子结构决定的,那具体影响哪些性质呢?
[讲]元素的性质指元素的金属性和非金属性、元素的主要化合价、原子半径、元素的第一电离能和电负性。
[学与问]元素周期表中,同周期的主族元素从左到右,最高化合价和最低化合价、金属性和非金属性的变化规律是什么?
[投影小结]同周期主族元素从左右,元素最高化合价和最低化合价逐渐升高,金属性逐渐减弱,非金属性逐渐增强。
[讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期性变化。
[板书]二、元素周期律
1、原子半径
[投影]观察图1—20分析:
[学与问]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?
2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?
[小结]同周期主族元素从左到右,原子半径逐渐减小。其主要原因是由于核电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子后电子间斥力增大带来原子半径增大的趋势。
同主族元素从上到下,原子半径逐渐增大。其主要原因是由于电子能层增加,电子间的斥力使原子的半径增大。
[讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。显然电子的能层数越大,电子间的负电排斥将使原子半径增大,所以同主族元素随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,所以同周期元素,从左往右,原子半径逐渐减小。
[问]那么,粒子半径大小的比较有什么规律呢?
[投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐渐减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大
2、核外电子排布相同的离子,随核电荷数的增大,半径减小。
3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,并且价态越高的粒子半径越小。
[过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?
[板书]2、电离能
(1)定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能.
①常用符号I表示,单位为KJ?mol-1
②意义:通常用电离能来表示原子或离子失去电子的难易程度。
[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子。
[板书](2)元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。
[讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的“气态”“基态”“电中性”“失去一个电子”等都是保证“最低能量”的条件。
[点击试题]已知Na元素的I1=496 KJ·mol-1,则Na (g) -e- →Na +(g) 时所需最低能量为 .
[投影]
[问]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢?
[讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、Cs的第一电离能也依次下降)。
[学与问]1、金属的电离能与碱金属的活泼性存在什么联系?
[讲]第一电离能越小,越易失去电子,金属的活泼性就越强。因此碱金属元素的第一电离能越小,金属的活泼性就越强。
[讲]同周期元素:碱金属元素的第一电离能最小,稀有气体元素的第一电离能最大;从左到右,元素的第一电离能在总体上呈现从小到大的变化趋势,表示元素原子越来越难失去电子。短周期元素的这种递变更为明显,这是同周期元素原子电子层数相同,但随着核电荷数增大和原子半径减小,核对外层电子的有效吸引作用依次增强的必然结果。
同主族元素:自上而下第一电离能逐渐减小,表明自上而下原子越来越容易失去电子电子。这是因为同主族元素原子的价电子数相同,原子半径逐渐增大,原子核对核外电子的有效吸引作用逐渐减弱。过渡元素的第一电离能的变化不太规则,随元素原子序数的增加从左到右略有增加。这是因为对这些元素的原子来说,增加的电子大部分排布在(n-1)d轨道上,核对外层电子的有效吸引作用变化不是太大。
[板书](3)电离能的变化规律:
同周期元素:从左到右,元素的第一电离能在总体上呈现从小到大的变化趋势,表示元素原子越来越难失去电子。
同主族元素:自上而下第一电离能逐渐减小,表明自上而下原子越来越容易失去电子电子。
[讲]总之,第一电离能的周期性递变规律是原子半径、核外电子排布周期性变化的结果
[思考与交流] Be的第一电离能大于B,N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga?
Be有价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,、比Be不稳定,因此失去第一个电子B比Be容易,第一电离能小
[讲]但值得我们注意的是:元素第一电离能的周期性变化规律中的一些反常:同一周期,随元素核电荷数的增加,元素第一电离能呈增大的趋势。主族元素:左-右:第一电离能依次明显增大(但其中有些曲折)。反常的原因:多数与全空(p0、d0)、全满(p6、d10)和半满(p3、d5)构型是比较稳定的构型有关。当原子核外电子排布在能量相等的轨道上形成全空、半充满和全充满结构时,原子的能量较低,该元素具有较大的第一电离能。故磷的第一电离能比硫的大,Mg的第一电离能比Al的第一电离能大。
[讲]在同周期元素中,稀有气体的第一电离能最大。金属越活泼,金属元素的第一电离能越小,非金属越活泼,非金属元素的第一电离能越大。
[点击试题]不同元素的气态原子失去最外层一个电子所需要的能量(设其为E)如图所示,试根据元素在周期表中的位置,分析图中曲线的变化特点,并回答下列问题。
(1)同主族内不同元素的E值的变化特点是 。各主族中E值的这种变化特点体现了元素性质的 变化规律。
(2)同周期内,随原子序数的增大,E值增大。但个别元素的E值出现反常现象,试预测下列关系中正确的是 (填写编号)。
①E(砷)>E(硒) ②E(砷)<E(硒)
③E(溴)>E(硒) ④E(溴)>E(硒)
(3)估计1mol气态Ca原子失去最外层一个电子所需能量E值的范围: <E< 。
(4)10号元素E值较大的原因是
解析:此题考查了元素第一电离能的变化规律和学生的归纳总结能力。
(1)同主族元素最外层电子数相同,随着原子核电荷数逐渐增大,原子核对最外层电子的吸引力逐渐减小,所以失去最外层电子所需能量逐渐减小。
(2)根据图像可知,同周期元素E(氮)>E(氧),E(磷)>E(硫),E值出现反常现象。故可推知第四周期E(砷)>E(硒)。但ⅥA族元素和ⅦA族元素的E值未出现反常。所以E(溴)>E(硒)。此处应填①、③。
(3)1mol 气态Ca原子失去最外层一个电子比同周期元素钾要难,比同主族元素Mg要容易,故其E值应在419~738之间。
(4)10号元素是Ne,它的原子最外层已经成为8电子稳定结构,故其E值较大。
答案:(1)随着原子序数的增大,E值变小 周期性。(2)①、③(3)419、438或填E(钾)、E(镁)(4)10号元素是氖,该元素原子的最外层电子排布已达到8个电子稳定结构。
[学与问]2、下表的数据从上到下是钠、镁、铝逐级失去电子的电离能。为什么原子的逐级电离能越来越大?这些数据跟钠、镁、铝的化合价有什么联系?
[讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4、I5……同一种元素的逐级电离能的大小关系:I1Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。而电离能的突跃变化,说明核外电子是分能层排布的。
[板书](4)第二电离能;由+1价气态阳离子再失去1个电子形成+2价气态阳离子所需要的能量称为第二电离能,常用符号I2表示,依次还有第三、第四电离能等。
[讲]通常,原子的第二电离能高于第一电离能,第三电离能又高于第二电离能。这是因为元素的原子失去电子后,原子核对核外电子的作用增加,再失去电子消耗能量增加,失电子变得困难。
[讲]根据电离能的定义可知,电离能越小,表示在气态时该原子越容易失去电子;反之,电离能越大,表明在气态时该原子越难失去电子。因此,运用电离能数值可以判断金属原子在气态时失电子的难易程度。
[板书](5) 电离能的应用
、根据电离能数据,确定元素核外电子的排布
[讲]如Li I1<[板书]根据电离能数据,确定元素在化合物中的化合价。
[讲]如K元素 I1<[板书]判断元素的金属性、非金属性强弱
[讲]I1越大,元素的非金属性越强,I1越小,元素的金属性越强。
[讲]需要我们注意的是,金属活动性表示的是在水溶液中金属单质中的原子失去电子的能力,而电离能是指金属元素在气态时失去电子成为气态阳离子的能力,二者对应条件不同,所以排列顺序不完全一致。
[过]电离能主要针对的是金属,对于非金属我们通常用与其相对应的电子亲和能,下面让我们来简单了解一下电子亲和能
[知识拓展]元素的电子亲和能
1、电子亲和能:元素的一个气态原子获得1个电子成为气态阴离子时所放出的能量称为第一电子亲和能
2、电子亲和能的符号和单位:E 单位为KJ?mol-1
3、电子亲和能的意义:电子亲和能的大小反映了气态原子获得电子成为气态阴离子的难易程度。电子亲和能大,该元素的原子就容易与电子结合
4、影响因素: 电子亲和能的大小 取决于原子核对外层电子的吸引以及电子和电子间的排斥这两个相反的因素。随着原子半径的减小,原子核对核外电子吸引作用增强,电子亲和能增大。但是,如果原子半径减小的程度使核外电子的密度增加很大,电子之间的排斥作用增加,则可能使电子亲和能减小,电子亲和能无论是在同周期还是同主族都没有简单的变化规律。
[随堂练习]
1、某元素的电离能(电子伏特)如下:
I1
I2
I3
I4
I5
I6
I7
14.5
29.6
47.4
77.5
97.9
551.9
666.8
此元素位于元素周期表的族数是
A. IA B. ⅡA C. ⅢA D、ⅣA E、ⅥA F、ⅤA G、 ⅦA
2.下列说法正确的是( )
A.第3周期所含的元素中钠的第一电离能最小
B.铝的第一电离能比镁的第一电离能大
C.在所有元素中,氟的电离能最大
D.钾的第一电离能比镁的第一电离能大
解析:考查元素第一电离能的变化规律,一般同周期从左到右第一电离能逐渐增大,碱金属元素的第一电离能最小,稀有气体最大故A正确C不正确;但有反常,第ⅢA和VA族元素比同周期相邻两种元素第一电离能都低。同主族从上到下元素的第一电离能逐渐减小。,由于核外价电子排布镁为3S2,Al为3S23P1,故Al的第一电离能小于Mg的,所以B错误;根据同主族同周期规律可以推测:第一电离能K3、下列原子的价电子排布中,对应于第一电离能最大的是( )
A、ns2np1 B、ns2np2 C、ns2np3 D、ns2np4
解析:当原子轨道处于全满、半满时,具有的能量较低,原子比较稳定,电离能较大。答案:C
4.能够证明电子在核外是分层排布的事实是( )
A、电负性 B、电离能 C、电子亲和能 D、电势能
解析:各级电离能逐级增大,I1,I2,I3。。。。。外层电子只有一个电子的碱金属元素很容易失去一个电子变为+1价阳离子,而达到稳定结构,I1较小,但再失去一个电子变为+2价阳离子却非常困难。即I2突跃式升高,即I2》I1,又如外层只有两个的Mg、Ca等碱土金属元素,I1和I2差别较小,但失去2个电子达到稳定结构后,在失去电子变为+3价阳离子却非常困难,即I3突跃式变大,I3》I2>I1,因此说电离能是核外电子分层排布的实验佐证。答案:B
5、下表是元素周期表的一部分,表中所列的字母分别代表某一化学元素
(1)下列 (填写编号)组元素的单质可能都是电的良导体。
①a、c、h ②b、g、k ③c、h、l ④d、e、f
(2)如果给核外电子足够的能量,这些电子便会摆脱原子核的束缚而离去。核外电子离开该原子或离子所需要的能量主要受两大因素的影响。
原子核失去核外不同电子所需的能量(KJ·mol-1)

X
Y
失去第一个电子
519
502
580
失去第二个电子
7 296
4 570
1 820
失去第三个电子
11 799
6 920
2 750
失去第四个电子
9 550
11 600
①通过上述信息和表中的数据分析,为什么锂原子失去核外第二个电子时所需的能量要远远大于失去第一个电子所需的能量 。
②表中X可能为13种元素中的 (填写字母)元素。用元素符号表示X和j形成的化合物的化学式       。
③Y是周期表中 族的元素的增加,I1逐渐增大。
④以上13种元素中, (填写字母)元素原子失去核外第一个电子需要的能量最多。
解析:(1)从所给元素在周期表中的位置不难知道a、c、d、f分别为Na、Mg、Sr和Al,e处于过渡元素区也一定为金属,它们都是电的良导体;h为碳元素,其单质中的石墨也是电的良导体,故应选①、④两组。
(2)①锂原子核外共有3个电子,其中两个在K层,1个在L层,当失去最外层的一个电子后,锂离子达到稳定结构,根据题给信息可知,锂离子再失去电子便会形成不稳定结构,因此锂原子失去第二个电子时所需能量远大于失去第一个电子所需的能量。②由表中数据可知:X失去第二个电子所需能量远大于失去第一个电子所需的能量(9倍多),而失去第三个、第四个电子所需能量皆不足前者的两倍,故第一个电子为最外层的1个电子,而其他几个电子应处于内层。结合所给的周期表知,X应为a,即钠元素,和j即氧元素所形成的化合物化学式分别为:Na2O和 Na2O2。③由表中所给Y的数据可知,Y失去第一、二、三个电子所需能量差别不大,而失去第四个电子所需能量远大于失去第三个电子所需的能量,因此,Y元素的最外层有3个电子,即为第ⅢA族的元素Al。④从题目所给信息知道,原子失电子所需能量不仅与原子核对核外电子的吸引力有关,还与形成稳定结构的倾向有关。结构越稳定失电子所需能量越高,在所给13种元素中,处于零族的m元素已达8e-稳定结构,因此失去核外第一个电子需要的能量最多。
第三课时
知识与技能
1、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质
2、能根据元素的电负性资料,解释元素的“对角线”规则。
3、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质
4、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力
过程与方法
情感与价值
重点:电负性意义
难点:电负性应用
板书设计:
3、电负性
(1) 键合电子:元素相互化合时,原子中用于形成化学键的电子称为键合电子
孤电子:元素相互化合时,元素的价电子中没有参加形成化学键的电子的孤电子。
(2)定义:用来描述不同元素的原子对键合电子吸引力的大小。
(3)意义:元素的电负性越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性越小,相应原子在化合物中吸引电子的能力越弱。
(4) 电负性大小的标准:以F的电负性为4.0和Li的电负性为1.0作为相对标准。
(6) 元素电负性的应用
 元素的电负性与元素的金属性和非金属性的关系
 电负性与化合价的关系
③判断化学键的类型
对角线规则:元素周期中处于对角线位置的元素电负性数值相近,性质相似。
教学过程:
[复习]1、什么是电离能?它与元素的金属性、非金属性有什么关系?
2、同周期元素、同主族元素的电离能变化有什么规律?
[讲]元素相互化合,可理解为原子之间产生化学作用力,形象地叫做化学键,原子中用于形成化学键的电子称为键合电子。电负性的概念是由美国化学家鲍林提出的,用来描述不同元素的原子对键合电子吸引力的大小(如图1—22)。电负性越大的原子,对键合电子的吸引力越大。
[投影]
[板书]3、电负性
(1) 键合电子:元素相互化合时,原子中用于形成化学键的电子称为键合电子
孤电子:元素相互化合时,元素的价电子中没有参加形成化学键的电子的孤电子。
[讲]用来表示当两个不同原子在形成化学键时吸引电子能力的相对强弱。鲍林给电负性下的定义是“电负性是元素的原子在化合物中吸引电子能力的标度”。
[板书](2)定义:用来描述不同元素的原子对键合电子吸引力的大小。
(3)意义:元素的电负性越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性越小,相应原子在化合物中吸引电子的能力越弱。
[讲]鲍林利用实验数据进行了理论计算,以氟的电负性为4.0和锂的电负性为1。0作为相对标准,得出了各元素的电负性(稀有气体未计),如图l—23所示。
[板书](4) 电负性大小的标准:以F的电负性为4.0和Li的电负性为1.0作为相对标准。
[投影]
[思考与交流]同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?
[讲]金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。
[讲]同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。
[板书](5) 元素电负性的周期性变化
 金属元素的电负性较小,非金属元素的电负性较大。
同周期从左到右,元素的电负性递增;同主族,自上而下,元素的电负性递减,对副族而言,同族元素的电负性也大体呈现出这种变化趋势。
[讲]电负性大的元素集中在元素周期表的右上角,电负性小的元素位于元素周期表的左下角。
[科学探究]根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元素的电负性变化图。
[投影]电负性的周期性变化示例
[讲]元素的电负性用于判断一种元素是金属元素还是非金属元素,以及元素的活泼性。通常,电负性小于2的元素,大部分是金属元素;电负性大于2的元素,大部分是非金属元素。非金属元素的电负性越大,非金属元素越活泼;金属元素的电负性越小,金属元素越活泼。例如,氟的电负性为4,是最强的非金属元素;钫的电负性为0.7,是最强的金属元素,
[板书](6) 元素电负性的应用
 元素的电负性与元素的金属性和非金属性的关系
[讲]金属的电负性一般都小于1.8,非金属的电负性一般都大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性在1.8左右,它们既有金属性,又有非金属性。
[讲]利用电负性可以判断化合物中元素化合价的正负;电负性大的元素易呈现负价,电负性小的元素易呈现正价。
[板书] 电负性与化合价的关系
[讲]电负性数值的大小能够衡量元素在化合物中吸引电子能力的大小。电负性数值小的元素在化合物中吸引电子的能力弱,元素的化合价为正值;电负性数值大的元素在化合物中吸引电子的能力强,元素的化合价为负价
[板书]③判断化学键的类型
[讲]一般电负性差值大的元素原子间形成的主要是离子键,电负性差值小于1.7或相同的非金属原子之间形成的主要是共价键;当电负性差值为零时,通常形成非极性键,不为零时易形成极性键。当电负性差值大于1.7,形成的是离子键
已知:两成键元素间电负性差值大于1.7 时,形成离子键,两成键元素间电负性差值小于1.7时,形成共价键。
①根据表中给出的数据,可推知元素的电负性具有的变化规律是 。
②.判断下列物质是离子化合物还是共价化合物?
Mg3N2 BeCl2 AlCl3 SiC
解析:元素的电负性是元素的性质,随原子序数的递增呈周期性变化。据已知条件及上表中数值:Mg3N2电负性差值为1.8,大于1.7,形成离子键,为离子化合物;BeCl2 AlCl3 SiC电负性差值分别为1.3、1.3、0.8,均小于1.7,形成共价键,为共价化合物。
答案:1.随着原子序数的递增,元素的电负性与原子半径一样呈周期性变化。2.Mg3N2;离子化合物。SiC,BeCl2、AlCl3均为共价化合物。
[板书]对角线规则:元素周期中处于对角线位置的元素电负性数值相近,性质相似。
[科学探究]
在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。
[讲]Li、Mg在空气中燃烧产物分别为Li2O、MgO,Be(OH)2、Al(OH)3均为两性氢氧化物,硼和硅的含氧酸均为弱酸,由此可以看出对角线规则的合理性。Li、Mg的电负性分别为1.0、1.2,Be、Al电负性均为1.5,B、Si的电负性分别为2.0、1.8数值相差不大,故性质相似.)
[讲]除此之外,我们还要注意电离能和电负性间的关系。通常情况下,第一电离能大的主族元素电负性大,但IIA族,VA族元素原子的价电子排布分别为ns2,ns2np3,为全满和半满结构,这两族元素原子第一电离能反常大。
[小结]原子半径、电离能、电负性的周期性变化规律:在元素周期表中同周期元素从左到右,原子半径逐渐减小,第一电离能逐渐增大(趋势),电负性逐渐增大。在元素周期表中同主族从上到下原子半径逐渐增大,第一电离能逐渐减小,电负性逐渐减小。
[随堂练习]
1、电负性的大小也可以作为判断金属性和非金属性强弱的尺度下列关于电负性的变化规律正确的是 ( )
A.周期表从左到右,元素的电负性逐渐变大
B.周期表从上到下,元素的电负性逐渐变大
C.电负性越大,金属性越强
D.电负性越小,非金属性越强
2、已知X、Y元素同周期,且电负性X>Y,下列说法错误的是( )
A、X与Y形成化合物是,X可以显负价,Y显正价
B、第一电离能可能Y小于X
C、最高价含氧酸的酸性:X对应的酸性弱于于Y对应的
D、气态氢化物的稳定性:HmY小于HmX
教学回顾:
表现性评价反映了学生学习本节知识的过程情况如何,是否达到情感态度与价值观目标。表现性评价的依据是学生在问题探究的过程中表现出来的情感态度和对知识的整合能力,能否把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性。如果说纸笔评价是对学生学业的量化评价的话,表现性评价则是对学生学业的质性评价。 ??? 在本节课的教学过程当中,由浅入深不断地设置问题,引导学生进行讨论探究,让学生主动参与知识探究的全过程。从学生的表现和反馈情况来看,基本上能达到预定的教学目标要求。
课件40张PPT。第一章原子结构与性质
第二节 原子结构与元素的性质
族主族:副族:ⅠA , ⅡA , ⅢA , ⅣA ,ⅤA , ⅥA , ⅦA 第VIII 族:稀有气体元素主族序数=最外层电子数=价电子数
=最高正价数(纵行) 零族:共七个主族ⅠB , ⅡB , ⅢB , ⅣB ,ⅤB , ⅥB , ⅦB 共七个副族三个纵行(8、9、10),位于Ⅶ B 与ⅠB中间 一、元素周期表的结构复习回忆某周期ⅡA族元素的原子序数为x,则同周期的ⅢA族元素的原子序数是( )
A 只有x+1
B 可能是x+8或x+18
C 可能是x+2
D 可能是x+1或x+11或x+25 课堂练习D原子结构表中位置元素性质原子序数= 核电荷数周期数= 电子层数主族序数=最外层电子数同位素-化学性质相似 相似性
递变性(从上至下,金属性增强,非金属性减弱)同周期同主族递变性(从左到右,金属性减弱,非金属性增强)(主族)最外层电子数 = 最高正价 最外层电子数-8 = 最低负价原子结构决定元素在周期表中的位置,决定性质(一)原子的电子排布与周期的划分(1)结合周期表,我们会发现,每一周期的第一种元素(除第一周期外)是 ________, 最外层电子排布为______,每一周期的最后一种元素都是 ___________ , 这些元素的最外层电子排布除He为1s2 外,其余都是__________.如此循环往复,这就是元素周期系中的一个个周期。
碱金属ns1稀有气体ns2np6(2)观察周期表发现周期表中周期序数等于该周期中元素的______. 能层数一、原子结构与元素周期表思考与探究 1、以第三周期为例,写出钠、镁、铝、硅、磷、硫、氯、氩基态原子的简化电子排布式并观察原子的核外电子排布变化有什么规律?最外层电子排布从1个电子(ns1)到
8个电子(ns2np6)呈周期性变化.结论:元素周期系的形成是由于元素的原子核外电子排布发生周期性的重复。312、你能否根据原子结构与各周期中元素种数的关系分析元素周期系周期发展规律?思考与探究32 由于随着核电荷数的递增,电子在能级里的填充顺序遵循构造原理,元素周期系的周期不是单调的,每一周期里元素的数目不总是一样多,而是随着周期序号的递增渐渐增多。因而,我们可以把元素周期系的周期发展形象的比喻成螺壳上的螺旋。科学探究考察元素周期表,探究下列问题:1.填空:
元素周期表共有__个周期,每一周期元素的种类分别有__________________种,每一周期开头第一个元素的最外层电子排布式的通式是_____,第一周期结尾元素的最外层电子排布式是_____,其它周期结尾元素的最外层电子排布式的通式是_____第一周期结尾元素的最外层电子排布式与其它周期不同的原因是_____________________。72、8、8、18、18、32、32(未满)ns11s2ns2np6第一周期只有一个1s能级,最多只有2个电子2.填空:
⑴元素周期表共有__个纵列,周期表上元素的“外围电子排布”简称“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化。每个纵列的价电子层的电子总数__(填是、否)相等。
⑵元素周期表中有__个族,其中由长周期与短周期共同组成的族叫__族(_个);完全由长周期组成的族叫__族(_个);第8、9、10三列叫__族;稀有气体叫__族。18是16主7副7Ⅷ03、按照电子排布,可把周期表的元素划分为5个区:s区、d区、ds区、p区、f区。划分区的依据是什么? s区、d区、p区分别有几个纵列?为什么s区、d区、ds区的元素都是金属?除ds区外,区的名称来自按构造原理最后填入电子的能级的符号(二)区的划分S区:IA、 IIA族—— ns1和ns2
除H外,其余为活泼金属。p区:IIIA~VIIA族、0族——ns2np1~6(除He)除H外,所有非金属元素都在p区。 ds区:IB、IIB族 ——(n-1)d10ns1~2
最外层电子数皆为1~2个,均为金属元素 。f区:镧系和锕系——(n-2)f0~14(n-1)d 0~2 ns2
最外层电子数基本相同,化学性质相似。d区: ⅢB~ⅦB和 Ⅷ ——(n-1)d1~9 ns1~2
最外层电子数皆为1~2个,均为金属元素,性质相似。(注:Pd 无s电子)4、为什么副族元素又称过渡元素?
5、非金属元素为什么主要集中在右上角的三角区内?
6、处于非金属三角区边缘的元素常被称为半金属或准金属。为什么?
副族元素处于金属元素向非金属元素过渡的区域,因此,又把副族元素称为过渡元素。4. 为什么副族元素又称为过渡元素?5.为什么在元素周期表中非金属元素主要集中在右上角三角区内(如图)?处于非金属三角区边缘的元素常被称为半金属或准金属。为什么?这是由元素的价电子结构和元素周期表中元素性质递变规律决定的,在元素周期表中,同周期的元素从左到右非金属性渐强,同主族元素从上到下非金属性渐弱,结果使元素周期表右上角的元素主要呈现非金属性。处于非金属三角区边缘的元素既能表现出一定的非金属性,又能表现出一定的金属性,因此,这些元素常被称之为半金属或准金属。主族元素:
族序数=原子的最外层电子数=价电子数
副族元素:
大多数族序数=(n-1)d+ns的电子数=价电子数(三)族的划分周期表上元素的“外围电子排布”简称“价电子层”,这是由于这些能级上的电子可在化学反应中发生变化,这些电子称为价电子。二、元素周期律元素的性质随( )的递增发生周期性的递变,称为元素的周期律。 核电荷数学与问 元素周期表中的同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?周期表中的同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?1、原子半径(一)原子半径:1、影响因素:2、规律:(1)电子层数不同时,电子层数越多,原子半径越大。二、元素周期律原子半径的大小取决于1、电子的能层数
2、核电荷数(2)电子层相同时,核电荷数越大,原子半径越小。(3)电子层、核电荷数都相同时,电子数越多,
原子半径越大。课堂练习1:
比较下列微粒的半径的大小:
(1)Ca AI
(2) Na+ Na
(3) Cl- Cl
(4)K+ Ca2+ S2- CI- ><>S2->CI->K+>Ca2+课堂练习2:
具有相同电子层结构的三种微粒An+、Bn-、C
下列分析正确的是( )
A.原子序数关系:C>B>A
B.微粒半径关系: Bn-> An+
C. C微粒是稀有气体元素的原子.
D. 原子半径关系是:A观察图1-21,总结第一电离能的变化规律:2、元素第一电离能的变化规律:1)同周期:
a、从左到右呈现递增趋势(最小的是碱金属,最大的是稀有气体的元素;2)同主族的元素自上而下第一电离能逐渐减少。3、电离能的意义:(第ⅡA元素和第ⅤA元素的反常现象如何解释?)b、第ⅡA元素>ⅢA的元素;第ⅤA元素>ⅥA元素 电离能是衡量气态原子失去电子难易的物理量。元素的电离能越小,表示气态时越容易失去电子,即元素在气态时的金属性越强。ⅤA半充满、 ⅡA全充满结构学与问:
1.碱金属的电离能与碱金属的活泼性存在什么关系?碱金属元素的 第一电离能越小,金属的活泼性就越强。2.为什么原子逐级电离能越来越大?这些数据跟钠、镁、铝的化合价有何关系?因为首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时失去电子后,阳离子所带的正电荷对电子的引力更强,从而电离能越来越大。看逐级电离能的突变。课堂练习:
下列说法正确的是( )
A.第3周期所含的元素中钠的第一电离能最小
B.铝的第一电离能比镁的第一电离能大
C.在所有元素中,氟的第一电离能最大.
D.钾的第一电离能比镁的第一电离能大.A反常现象最大的是稀有气体的元素:He从左到右呈现递增趋势(最小的是碱金属)K〈Na〈Mg(三)电负性(阅读课本P18)1、基本概念化学键:元素相互化合,相邻的原子之间产生的强烈的化学作用力,形象地叫做化学键。键合电子:原子中用于形成化学键的电子称为键合电子。电负性:用来描述不同元素的原子对键合电子的吸引力的大小。(电负性是相对值,没单位)2、变化规律:
①同一周期,主族元素的电负性从左到右逐渐增大,表明其吸引电子的能力逐渐增强。②同一主族,元素的电负性从上到下呈现减小趋势,表明其吸引电子的能力逐渐减弱。①电负性越大,元素的非金属性越强,电负性越小,元素的非金属性越弱,金属性越强。(三)电负性3、电负性的意义:②电负性相差很大的元素化合通常形成离子键;电负性相差不大的两种非金属元素化合,通常形成共价键;电负性相差越大的共价键,共用电子对偏向电负性大的原子趋势越大,键的极性越大。鲍林L.Pauling
1901-1994鲍林研究电负性的手搞金 属:<1.8
类金属:≈1.8
非金属:>1.8 以氟的电负性为4.0和锂的电负性为1.0作为相对标准,得出了各元素的电负性。电负性的大小可以作为判断金属性和非金属性强弱的尺度电负性:利用图、表、数据说明科学探究1. 下列左图是根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元素的电负性变化图。 科学探究2.在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。 解答:Li、Mg在空气中燃烧的产物为Li2O、MgO,
Be(OH)2、Al(OH)3都是两性氢氧化物,H3BO3、H2SiO3都是弱酸。这些都说明“对角线规则”的正确性。体现科学探究意识
——采用多种探究方式课堂练习:
一般认为:如果两个成键元素的电负性相差大于1.7,它们通常形成离子键;如果两个成键元素的电负性相差小于1.7,它们通常形成共价键。查阅下列元素的电负性数值,判断:①NaF②AlCl3③NO④MgO⑤BeCl2⑥CO2
共价化合物( )
离子化合物( )②③⑤⑥①④1、每一周期元素都是从碱金属开始,以稀有气体结束
2、f区都是副族元素,s区和p区的都是主族元素
3、已知在200C 1mol Na失去1 mol电子需吸收650kJ能量,则其第一电离能为650KJ/mol。
4、Ge的电负性为1.8,则其是典型的非金属
5、气态O原子的电子排布为:
6、?半径:K+>Cl-
7、酸性 HClO>H2SO4 ,碱性:NaOH > Mg(OH)2
8、第一周期有2*12=2,第二周期有2*22=8,则第五周期有2*52=50种元素概念辩析×√××××√×