名称 | 数学人教A版(2019)选择性必修第三册7.4.1二项分布 课件(共27张ppt) | | |
格式 | pptx | ||
文件大小 | 1.7MB | ||
资源类型 | 教案 | ||
版本资源 | 人教A版(2019) | ||
科目 | 数学 | ||
更新时间 | 2023-06-08 15:25:41 |
二项分布
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布, 记作X ~ B(n, p).
概念生成
概念辨析
问题5 对比二项分布与二项式定理,你能看出它们之间的联系吗
如果把p看成b ,1-p看成a ,则 就是二项式定理[(1-p)+p]n的展开式的第k+1项,由此才称为二项分布.
服从二项分布的事件A恰好发生k次的概率 正好是二项式定理 展开式的第k+1项,故有
追问 二项分布和两点分布有什么联系?
两点分布是一种特殊的二项分布,即是n=1的二项分布;
二项分布可以看做两点分布的一般形式.
概念辨析
二项分布的分布列如下表
当n=1时,可以得到两点分布的分布列如右表:
典例解析
例1 将一枚质地均匀的硬币重复抛掷10次,求:
(1) 恰好出现5次正面朝上的概率;
(2) 正面朝上出现的频率在[0.4, 0.6]内的概率.
解:设A=“正面朝上”,则P(A)=0.5. 用X表示事件A发生的次数,则 X ~ B(10, 0.5).
(2) 正面朝上出现的频率在[0.4, 0.6]内等价于4≤X≤6,于是所求概率为
(1) 恰好出现5次正面朝上的概率为
随机变量X服从二项分布的三个前提条件:
(1) 每次试验都是在同一条件下进行的;
(2) 每一次试验都彼此相互独立;
(3) 每次试验出现的结果只有两个,即某事件要么发生,要么不发生.
只有这三个条件均满足时才能说明随机变量X服从二项分布,其事件A在n次独立重复试验中恰好发生k次的概率可用下面公式计算.
典例解析
问题6 如何判断一个随机变量X是否服从二项分布?
巩固练习
解:
课本77页
3. 判断下列表述正确与否,并说明理由:
(1) 12道四选一的单选题,随机猜结果,猜对答案的题目数X~B(12, 0.25);
(2) 100 件产品中包含10件次品,不放回地随机抽取6件,其中的次品数Y~B(6, 0.1).
每道题猜对答案与否是独立的,且每道题猜对答案的概率为0.25,故猜对答案的题目数X服从二项分布,即X~B(3, 0.6).
(1) 正确. 理由如下:
每次抽到次品的概率为0.1,但由于是不放回抽样,所以每次是否抽到次品不独立,不满足二项分布的条件.
(2) 错误. 理由如下:
例2 如图是一块高尔顿板的示意图. 在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃. 将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中. 格子从左到右分别编号为0, 1, 2, , 10,用X表示小球最后落入格子的号码,求X的分布列.
解:设A=“向右下落”,则=“向左下落”,且P(A)=P()=0.5.
因为小球最后落入格子的号码X等于事件A发生的次数,而小球在下落的过程中共碰撞小木钉10次,所以X~B(10, 0.5).
X的概率分布图如右图所示:
于是,X的分布列为
典例解析
例3 甲、乙两选手进行象棋比赛, 如果每局比赛甲获胜的概率为0.6, 乙获胜的概率为0.4, 那么采用3局2胜制还是采用5局3胜制对甲更有利
解1:若采用3局2胜制,甲最终获胜有两种可能的比分2:0或2:1,前者是前两局甲连胜,后者是前两局甲、乙各胜一局且第3局甲胜. 因为每局比赛的结果是独立的,所以甲最终获胜的概率为
类似地,采用5局3胜制,甲最终获胜有3种比分3:0, 3:1或3:2. 因为每局比赛的结果是独立的,所以甲最终获胜的概率为
因为p2>p1,所以5局3胜制对甲有利. 实际上,比赛局数越多,对实力较强者越有利.
典例解析
解2:若采用3局2胜制,不妨设赛满3局,用X表示3局比赛中甲胜的局数,则X~B(3, 0.6),所以甲最终获胜的概率为
同理,若采用5局3胜制,则X~B(5, 0.6),所以甲最终获胜的概率为
例3 甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更有利
思考 为什么假定赛满3局或5局,不影响甲最终获胜的概率
采用3局2胜制赛满3局时, 若前2局获胜, 那第3局的胜负并不影响甲获胜; 同样, 采用5局3胜制赛满5局, 若前3局获胜, 那后2局的胜负并不影响甲获胜, 若前4局胜3局, 那第5局的胜负也不影响甲获胜.
典例解析
方法归纳
一般地,确定一个二项分布模型的步骤如下:
(1) 明确伯努利试验及事件A的意义,确定事件A发生的概率p;
(2) 确定重复试验的次数n,并判断各次试验的独立性;
(3) 设X为n次独立重复试验中事件A发生的次数,则X~B(n, p).
巩固练习
课本77页
解:
2. 鸡接种一种疫苗后, 有80%不会感染某种病毒. 如果5只鸡接种了疫苗, 求:
(1) 没有鸡感染病毒的概率;
(2) 恰好有1只鸡感染病毒的概率.
新知探究:二项分布的均值与方差
问题7 假设随机变量X服从二项分布B(n, p), 那么X的均值和方差各是什么
对于一个离散型随机变量,除了关心它的概率分布外,我们还关心它的均值和方差等数字特征.
因此, 一个服从二项分布的随机变量,其方差和均值也是我们关心的.
我们知道,抛掷一枚质地均匀的硬币,“正面朝上”的概率为0.5,如果掷100次硬币,期望有100×0.5=50次正面朝上.
根据均值的含义,对于服从二项分布的随机变量X, 我们猜想E(X)=np.
新知探究:二项分布的均值与方差
从简单开始, 先考察n较小的情况.
服从二项分布的随机变量X, 我们猜想:E(X)=np.
(1)当n=1时, X服从两点分布,X分布列为 则有
E(X)= 0×(1-p)+ 1×p=p
D(X)= 02×(1-p)+ 12×p-p2 = p(1-p)
(2)当n=2时, X分布列为
P(X=0)=(1-p)2, P(X=1)=2p(1-p), P(X=2)=p2
E(X)=0×(1-p)2+1×2p(1-p)+2×p2 =2p
D(X)= 02×(1-p)2+12×2p(1-p)+22×p2-(2p)2=2p(1-p)
P(X=0)=1-p, P(X=1)=p,
由此可猜想, 若X~B(n, p), 则有
新知探究:二项分布的均值与方差
如果X~B(n, p), 那么 E(X)= np, D(X)=np(1-p).
下面对均值进行证明.
证明:
巩固练习
课本77页
解:
1. 将一枚质地均匀的硬币连续抛掷4次,X表示“正面朝上”出现的次数.
(1) 求X的分布列;
(2) E(X)=_______,D(X)=_________.
解:
5.某射手进行射击训练,假设每次射击击中目标的概率为0.6,且每次射击的结果互不影响,已知射手射击了5次,求:
(1) 其中只在第一、三、五次击中目标的概率;
(2) 其中恰有3次击中目标的概率;
(3) 其中恰有3次连续击中目标,而其他两次没有击中目标的概率.
巩固练习
课堂小结
1. 二项分布:
一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p (0
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布, 记作X ~B(n,p).
若X~B(n, p),则有
2. 二项分布的均值与方差: