专题6 化学反应与能量变化 单元测试(含解析) 下学期高一化学苏教版(2020)必修第二册

文档属性

名称 专题6 化学反应与能量变化 单元测试(含解析) 下学期高一化学苏教版(2020)必修第二册
格式 docx
文件大小 1.1MB
资源类型 教案
版本资源 苏教版(2019)
科目 化学
更新时间 2023-06-09 19:04:59

图片预览

文档简介

专题6《化学反应与能量变化》单元检测题
一、单选题
1.下列反应既属于氧化还原反应,又属于放热的是
A.氢氧化钠与稀硫酸反应 B.灼热的木炭与反应
C.铁与稀硫酸反应 D.石灰石高温分解
2.已知:H2 (g)+F2(g) =2HF(g) △H=- 270 kJ /mol,下列说法正确的是
A.1个氢气分子与1个氟气分子反应生成2个氟化氢分子放出270kJ
B.1 mol 氢气与1 mol 氟气反应生成2mol 液态氟化氢放出的热量小于270kJ
C.在相同条件下,2 mol 氟化氢气体的总能量大于1 mol 氢气与1 mol 氟气的总能量
D.2 mol氟化氢气体分解成1mol的氢气积1mol的氟气吸收270kJ热量
3.日常生活中的下列做法,与调控化学反应速率无关的是
A.燃煤时将煤块粉碎为煤粉
B.制作绿豆糕时添加适量的食品防腐剂
C.空运水果时在包装箱中放入冰袋
D.炼铁时采用增加炉子高度的方法减少尾气排放
4.在容积固定的2 L密闭容器中发生反应:CO(g)+2H2(g)CH3OH(g) △H=a kJ·mol-1,若充入2 mol CO(g)和4 mol H2(g),在不同温度、不同时段下H2的转化率如下表:(已知a1≠a2)
15分钟 30分钟 45分钟 1小时
T1 45% 75% 85% 85%
T2 40% 60% a1 a2
下列说法中错误的是A.T1℃下,45分钟该反应达到平衡状态
B.根据数据判断:T1C.T2℃下,在前30分钟内用CO表示的化学反应速率为1.20 mol/(L·h)
D.该反应的△H>0
5.已知:① kJ·mol-1
② kJ·mol-1
③ kJ·mol-1
下列说法正确的是
A.的燃烧热kJ·mol-1
B. kJ·mol-1
C.等物质的量的和完全燃烧,放出的热量更多
D.在中性溶液中,和不能形成燃料电池
6.中国研究人员研制出一种新型复合光催化剂,可以利用太阳光在催化剂表面实现高效分解水,主要过程如图所示,下列说法错误的是
A.上述过程中,反应物的总能量小于生成物的总能量
B.上述过程中,太阳能转化为化学能
C.过程Ⅰ释放能量,过程Ⅱ吸收能量
D.过程Ⅲ属于氧化还原反应
7.下列属于放热反应的是
A.氢氧化钡晶体与氯化铵反应 B.碳酸氢钠受热分解
C.镁条与盐酸反应 D.灼热的碳与二氧化碳反应
8.一种可充电锂-空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x=0或1)。下列说法正确的是(  )
A.放电时,多孔碳材料电极为负极
B.放电时,外电路电子由多孔碳材料电极流向锂电极
C.充电时,电解质溶液中Li+向多孔碳材料区迁移
D.充电时,电池总反应为Li2O2-x=2Li+(1—)O2
9.氢氧燃料电池的能量转化率较高,且产物是H2O,无污染,是一种具有应用前景的绿色电源。下列有关氢氧燃料电池的说法不正确的是
A.通入氢气的电极发生氧化反应
B.正极的电极反应式为O2+2H2O+4e-=4OH-
C.放电过程中碱性电解液的pH不变
D.碱性电解液中阳离子向通入氢气的方向移动
10.化学与生产、生活密切相关,下列说法错误的是
A.高纯硅晶体可用于制作太阳能电池
B.稀土永磁材料是电子通讯技术中的重要材料,稀土元素都是金属元素
C.生活中制作油条的口诀是“一碱、二矾、三钱盐”,其中的“碱”是烧碱
D.干电池低汞化、无汞化,有利于减少废电池造成的土壤污染
11.N2和H2在催化剂表面合成氨的微观历程及能量变化的示意图如图所示,用、、分别表示N2、H2、NH3,下列说法正确的是
A.使用催化剂时,合成氨的反应放出的热量减少
B.在该过程中,N2、H2 断键形成 N 原子和 H 原子
C.在该过程中,N原子和H原子形成了含有非极性键的NH3
D.合成氨反应中,反应物断键吸收的能量大于生成物形成新键释放的能量
12.硫化氢与甲醇合成甲硫醇的催化过程如下,下列说法中正确的是
A.过程①放出能量
B.过程④中,只形成了C—S 键
C.硫化氢与甲醇合成甲硫醇的反应类型为取代反应
D.该催化剂可降低反应活化能,反应前后没有变化,并没有参加反应
13.科技助力北京2022年冬奥会,中国成功举办了一次无与伦比的冬奥会,展示了国家的日益强盛。下列有关说法中不正确的是
A.冬奥火炬“飞扬”采用氢气作为燃料,氢气属于清洁能源
B.颁奖礼服内胆添加第二代石墨烯发热材料、石墨烯属于高分子材料
C.国际速滑馆“冰丝带”使用二氧化碳跨临界直冷技术制冰,该过程属于物理变化
D.滑雪服采用的剪切增稠液体(STF)材料。在常态下处于粘稠的半液体状态,高速撞击下分子立刻相互连接形成防护层,对运动员有保护作用
14.和都是汽车尾气中的有害气体,它们在催化转化器中能反应生成氮气和,对此反应,下列说法中错误的是
A.改变压强不可以改变反应速率
B.使用催化剂能同时增大正、逆反应的速率
C.缩小体积能增大反应速率
D.升高温度能增大吸热方向的反应速率
15.化学反应中的能量变化是由化学反应中旧化学键断裂时吸收的能量与新化学键形成时放出的能量不同引起的,如图为N2(g)和O2(g)反应生成NO(g)过程中的能量变化。则下列说法正确的是
A.通常情况下,NO比N2稳定
B.通常情况下,N2(g)和O2(g)混合能直接生成NO
C.1molN2(g)和1molO2(g)反应吸收的能量为180kJ
D.1molN2(g)和1molO2(g)具有的总能量大于2molNO(g)具有的总能量
二、填空题
16.把0.5mol X气体和0.6mol Y气体混合于2L的恒容密闭容器中,使它们发生如下反应:4X(g)+5Y(g) nZ(g)+6W(g),2min末生成0.6mol W,若测知以Z的浓度变化表示的反应速率为0.05mol/(L·min),试计算:
(1)前2min内用X的浓度变化表示的平均反应速率为_______
(2)2min末时Y的浓度为_______
(3)2min末,恢复到反应前温度,体系内压强是反应前压强的_______倍
17.(1)已知在2L的固定容积的密闭容器中进行下列可逆反应,各物质的有关数据如下:
3A (g) + B (g)2C(g)
起始物质的量浓度(mol/L):1.5 1 0
2s末物质的量浓度(mol/L):0.9 0.8 0.4
则:①0到2s用物质C来表示的反应速率为_________________;
②从反应开始到2s末,B的转化率为________________;
③下列事实不能够说明上述反应在该条件下已经达到化学平衡状态的是_______。
A.气体的平均相对分子质量保持不变
B.容器内气体的密度不变
C.容器内气体的总压强保持不变
D.vA︰vB︰vC=3︰2︰2
E.容器内气体C的物质的量分数保持不变
(2)①锌电池有望代替铅蓄电池,它的构成材料是锌、空气、某种电解质溶液,发生的总反应式是:2Zn+O2=2ZnO。则该电池的负极材料是_________;当导线中有0.4 mol电子通过时,理论上消耗的O2在标准状况下的体积是_______ L。
②瑞典ASES公司设计的曾用于驱动潜艇的液氨-液氧燃料电池示意图如右,该燃料电池工作时,外电路中电流方向是从电极_____到电极_____;电池的总反应为______________________。
18.如图所示,将锌、铜通过导线相连,置于稀硫酸中。
(1)将锌片直接插入稀硫酸中,发生反应的化学方程式是_______。用导线将锌片和石墨棒连接,再插入稀硫酸中,构成原电池反应。铜片上的现象是_______,电极反应式为_______。
(2)电子由_______经导线流向_______(填“锌”或“铜”),说明_______为负极。
(3)若反应过程中有电子发生转移,则生成的氢气在标准状况下的体积为_______。
19.化学反应的速率和限度对人类生产生活有重要的意义。
I.已知甲同学通过测定该反应发生时溶液变浑浊的时间,研究外界条件对化学反应速率的影响,设计实验如下:(所取溶液体积均为2mL)
实验编号 温度/℃
Ⅰ 25 0.1 0.1
Ⅱ 25 0.2 0.1
Ⅲ 50 0.2 0.1
(1)上述实验中溶液最先变浑浊的是_______。(填实验编号,下同)
(2)为探究浓度对化学反应速率的影响,应选择实验_______和_______。
Ⅱ.和之间发生反应:(无色)(红棕色),一定温度下,体积为2L的恒容密闭容器中,各物质的物质的量随时间变化的关系如图所示。请回答下列问题:
(3)若上述反应在甲、乙两个相同容器内同时进行,分别测得:甲中,乙中,则_______中反应更快。
(4)该反应达最大限度时Y的转化率为_______;若初始压强为P0,则平衡时P平=_______(用含P0的表达式表示)。
(5)下列描述能表示该反应达平衡状态的是_______。
A.容器中X与Y的物质的量相等
B.容器内气体的颜色不再改变
C.
D.容器内气体的密度不再发生变化
E.容器内气体的平均相对分子质量不再改变
20.氧化剂在反应时不产生污染物,被称为绿色氧化剂,因而受到人们越来越多的关注。某实验小组以分解为例,探究浓度、催化剂、温度对反应速率的影响。在常温下按照下表所示的方案完成实验。
实验编号 温度(℃) 反应物 催化剂
① 20 253%溶液 无
② 20 255%溶液 无
③ 20 255%溶液 0.1g
④ 20 255%溶液 1~2滴1溶液
⑤ 30 255%溶液 0.1g
(1)实验①和②的目的是___________。同学甲在进行实验①和②时并没有观察到明显现象。资料显示,通常条件下过氧化氢稳定,不易分解。为了达到实验目的,可采取的改进方法是___________(写出一种即可)。
(2)实验③、④、⑤中,测得生成氧气的体积随时间变化如甲图所示。分析该图能得出的结论是___________,___________;
(3)同学乙设计了乙图所示的实验装置对过氧化氢的分解速率进行定量分析,以生成20气体为准,其他影响实验的因素均已忽略。实验中需要测量的数据是___________。
(4)向某体积固定的密闭容器中加入0.6A、0.2C和一定量(未知)的B三种气体,一定条件下发生反应,各物质浓度随时间变化如图所示。已知在反应过程中混合气体的平均相对分子质量没有变化。请回答:
①写出反应的化学方程式:___________;
②若,则内反应速率___________,A的转化率为___________;
③B的起始的物质的量是___________;平衡时体系内的压强为初始状态的___________倍。
21.依据化学能与热能的相关知识回答下列问题:
Ⅰ.键能是指在25 ℃、101 kPa,将1 mol理想气体分子AB拆开为中性气态原子A和B时所需要的能量。显然键能越大,化学键越牢固,含有该键的分子越稳定。如H—H键的键能是436 kJ·mol-1,是指使1 mol H2分子变成2 mol H原子需要吸收436 kJ的能量。
(1)已知H-Cl键的键能为431 kJ·mol-1,下列叙述正确的是___________(填字母,下同)。
A.每生成1 mol H-Cl键放出431 kJ能量 B.每生成1 mol H-Cl键吸收431 kJ能量
C.每拆开1 mol H-Cl键放出431 kJ能量 D.每拆开1 mol H-Cl键吸收431 kJ能量
(2)已知键能:H-H键为436 kJ·mol-1;H-F键为565 kJ·mol-1;H-Cl键为431 kJ·mol-1;H-Br键为366 kJ·mol-1.则下列分子受热时最稳定的是___________。
A.HF   B.HCl   C.HBr   D.H2
(3)能用键能大小解释的是___________。
A.氮气的化学性质比氧气稳定 B.常温常压下溴呈液态,碘呈固态
C.稀有气体一般很难发生化学反应 D.硝酸易挥发而硫酸难挥发
Ⅱ.已知化学反应N2+3H22NH3的能量变化如图所示,回答下列问题:
(1)1 mol N原子和3 mol H原子生成1 mol NH3(g)的过程___________(填“吸收”或“放出”)___________kJ能量。
(2)0.5 mol N2(g)和1.5 mol H2(g)生成1 mol NH3(g)的过程___________(填“吸收”或“放出”)___________kJ能量。
22.回答下列问题:
(1)键能是表征化学键强度的物理量,可以用键断裂时所需能量的大小来衡量。从断键和成键的角度分析反应2H2(g)+O2(g)2H2O(g)中能量的变化,化学键的键能如表所示:
化学键 H—H O=O H—O
键能(kJ·mol-1) 436 496 463
则生成1molH2O(g)可以放出____kJ热量。
(2)下列反应中,属于放热反应的是____(填字母,下同),属于吸热反应的是____。
a.盐酸与烧碱溶液反应
b.Ba(OH)2 8H2O+2NH4Cl=BaCl2+10H2O+2NH3↑
c.氢气在氧气中燃烧生成水
d.高温煅烧石灰石使其分解
e.铝和盐酸反应
f.葡萄糖在人体内氧化分解
(3)A、B、C、D四种金属按下表中装置进行实验。
装置
现象 金属A不断溶解 C的质量增加 A上有气体产生
根据实验现象回答下列问题:
①装置甲溶液中的阴离子移向____(填“A”或“B”)极。
②装置乙中正极的电极反应式为____。
③四种金属活动性由强到弱的顺序是____。
23.下表中的数据是破坏1mol物质中的化学键所消耗的能量:
物质 Cl2 Br2 I2 HCl HBr HI H2
能量/kJ 243 193 151 432 366 298 436
根据上述数据回答下列问题:
(1)下列物质中本身具有的能量最低的是_______(填字母)。
A.H2 B.Cl2 C.Br2 D.I2
(2)下列氢化物中最稳定的是_______(填字母)。
A.HCl B.HBr C.HI
(3)(X代表Cl、Br、I)的反应是_______(填“吸热”或“放热”)反应。
(4)相同条件下,X2(X代表Cl、Br、I)分别与氢气反应,当消耗等物质的量的氢气时,放出的热量最多的是_______。
24.回答下列问题:
(1)根据氧化还原反应:Cu(s)+2Ag+(aq)=Cu2+(aq)+2Ag(s)设计原电池,若用铜、银做两个电极,开始两电极质量相等,当电路中转移0.01mol电子时两电极的质量差为____g。
(2)某种燃料电池的工作原理示意如图所示,a、b均为惰性电极。
①假设使用的“燃料”是氢气(H2),则a极的电极反应式为____。若电池中氢气(H2)通入量为224mL(标准状况),且反应完全,则理论上通过电流表的电量为____C。(已知一个电子所带电量为1.6×10 19C,NA约为6.02×1023mol 1)。
②假设使用的“燃料”是甲醇(CH3OH),则a极的电极反应式为____,如果消耗甲醇160g,假设化学能完全转化为电能,则转移电子的数目为____(用NA表示)。
(3)一种高性能的碱性硼化钒(VB2)—空气电池如图所示,电池总反应为4VB2+11O2+20OH-+6H2O=8B(OH)+4VO。VB2电极发生的电极反应为____。
25.化学反应与生产研究息息相关,我们不仅关注能量变化,还需要关注化学反应的快慢和程度。请根据要求,回答下列问题:
(1)下面是四个化学反应理论上不可以用于设计原电池的化学反应是_______(填字母,下同)
A.
B.
C.
D.
(2)将氢气与氧气的反应设计成燃料电池,其利用率更高,装置如图所示(a、b为多孔碳棒)其中_______(填A或B)处电极入口通氧气,其电极反应式为_______。当消耗标准状况下氢气11.2L时,假设能量转化率为85%,则导线中转移电子的物质的量为_______。
(3)某温度时,在2L容器中发生X、Y两种物质间的转化反应,X、Y物质的量随时间变化的曲线如图所示:
①该反应的化学方程式为_______。
②反应开始至2min时,Y的平均反应速率为_______。
③2min时,v正_______(填“>”“<”或“=”)v逆。
参考答案:
1.C
【解析】A.氢氧化钠与稀硫酸反应放热,但该反应不是氧化还原反应,A不选;
B.碳与二氧化碳反应生成一氧化碳是氧化还原反应,但属于吸热反应,B不选;
C.铁与稀硫酸反应生成硫酸亚铁和氢气,是放热反应,且是氧化还原反应,C选;
D.石灰石分解生成氧化钙和二氧化碳是吸热反应,且不是氧化还原反应,D不选;
答案选C。
2.D
【解析】A.热化学方程式中的化学计量数代表物质的量,不代表分子数,A错误;
B.2mol液态氟化氢所含能量比2mol气态氟化氢所含能量低,故生成2mol液态氟化氢比生成2mol气态氟化氢放热多,B错误;
C.该反应是放热反应,所以在相同条件下,2 mol 氟化氢气体的总能量小于1 mol 氢气与1 mol 氟气的总能量,C错误;
D.由热化学方程式可知,2mol氟化氢气体分解成1mol的氢气和1mol的氟气时应吸收270kJ的热量,D正确。
答案选D。
3.D
【解析】A.煤块粉碎为煤粉,增大接触面积,可以加快反应速率,故A不选;
B.在食品中添加防腐剂,可以减慢反应速率,故B不选;
C.冰袋可以降低温度,减慢反应速率,故C不选;
D.提高炼铁高炉的高度不能改变平衡状态,因此不能减少尾气中CO的浓度,也不能改变反应速率,故D选.
故选D。
4.B
【解析】根据平衡的定义,当物质的浓度保持不变时达到的状态即为平衡状态进行判断平衡点,根据转换率可表示单位时间内转换的快慢可以判断反应速率。根据速率公式进行计算速率。
【解析】A.T1℃下,45分钟到1小时氢气的转化率不变,故可判断达到平衡,故A正确;B.根据a1≠a2判断T2时达到平衡的时间在45分钟后,T2比T1的反应慢,故温度低,B不正确;
C.T2℃下,在前30分钟内氢气的转化率为60%,则转换了的氢气的物质的量为:4 mol ×60%=2.4mol,则转换的一氧化碳根据方程式计算得:1.2mol,根据速率公式得:,故C正确;
D.根据温度T2到T1的转化率降低,说明平衡相对向逆移,而温度降低,故逆反应为放热,正反应时吸热反应,故D正确;
故选答案B。
【点睛】注意反应是吸热还是放热,根据温度对平衡的影响进行判断,升高温度平衡向吸热方向移动。
5.C
【解析】A.由②+③×4可得可知的△H=[-1452+(-44)×4] kJ/mol =-1628 kJ/mol,所以2mol甲醇完全燃烧放出的热量为1628 kJ,则1mol甲醇完全燃烧放出的热量应为814kJ,所以甲醇的燃烧热应为726kJ/mol,故A错误;
B.根据盖斯定律,①×3-(②+③×4)×2可得的△H={-890.31×3-[-1452+(-44)×4] ×2} kJ·mol-1=409.7 kJ·mol-1,故B错误;
C.设二者的质量均为1g,则甲烷的物质的量为mol,甲醇的物质的量为mol,根据①可知1g甲烷完全燃烧放出的热量为890.31 kJ·mol-1×mol=55.64 kJ,根据A选项分析可知1g甲醇完全燃烧放出的热量为1628 kJ/mol×mol=50.875 kJ,所以甲烷放出的热量多,故C正确;
D.只要溶液为电解质溶液,可以导电从而形成闭合回路,就可以形成燃料电池,故D错误;
故答案为C。
6.C
【解析】A.由图可知,太阳能使水分解,水分解吸热,则反应物的总能量小于生成物的总能量,故A正确;
B.由图可知,太阳能使水分解,则实现了光能向化学能的转化,故B正确;
C.过程Ⅰ断键,吸收能量,过程Ⅱ中生成氢气、过氧化氢,形成化学键,过程Ⅱ放出能量,故C错误;
D.过程Ⅲ为O-H键的断裂过程生成氢气和氧气,化学反应为:2H2O2=2H2+O2,属于氧化还原反应,故D正确;
故选C。
7.C
【解析】A.氢氧化钡晶体与氯化铵反应产生BaCl2和氨水,该反应发生吸收热量,因此该反应为吸热反应,A不符合题意;
B.碳酸氢钠受热分解产生碳酸钠、水、二氧化碳,该反应发生会吸收热量,因此该反应为吸热反应,B不符合题意;
C.镁条与盐酸反应产生氯化镁和氢气,该反应发生放出热量,使溶液温度升高,因此反应为放热反应,C符合题意;
D.灼热的碳与二氧化碳反应产生CO,反应发生吸收热量,因此该反应为吸热反应,D不符合题意;
故合理选项是C。
8.D
【解析】A.放电时,O2与Li+在多孔碳电极处反应,说明电池内,Li+向多孔碳电极移动,因为阳离子移向正极,所以多孔碳电极为正极,A错误;
B.因为多孔碳电极为正极,外电路电子应该由锂电极流向多孔碳电极(由负极流向正极),B错误;
C.充电和放电时电池中离子的移动方向应该相反,放电时,Li+向多孔碳电极移动,充电时向锂电极移动,C错误;
D.根据图示和上述分析,电池的正极反应是O2与Li+得电子转化为Li2O2-X,电池的负极反应是单质Li失电子转化为Li+,所以总反应为:2Li + (1—)O2 = Li2O2-X,充电的反应与放电的反应相反,所以为Li2O2-X = 2Li +(1—)O2,选项D正确;
答案选D。
9.D
【解析】氢氧燃料电池工作时,是把化学能转变为电能,通入氢气的电极为电源的负极,发生氧化反应,电极反应式为H2-2e-+2OH-═2H2O,通入氧气的电极为原电池的正极,电极反应式为O2+2H2O+4e-═4OH-,电子是从负极流向正极,阳离子向正极移动,阴离子向负极移动。
【解析】A.氢氧燃料电池中,氢气易失电子发生氧化反应,故A正确;
B.氧气易得电子发生还原反应,通入氧气的电极是正极,电极反应式为O2+2H2O+4e-=4OH-,故B正确;
C.由图可知,氢氧燃料电池放电过程中,总反应为氢气和氧气反应生成水,水从负极边上排出,则碱性电解液的pH不变,故C正确;
D.阳离子向正极移动即通入氧气的电极移动,故D错误;
故答案选D。
10.C
【解析】A.太阳能电池工作原理的基础是半导体PN结的光生伏特效应,高纯硅晶体是一种良好的半导体材料,故可用于制作太阳能电池,A正确;
B.稀土元素都位于周期表中的过渡金属区,故稀土永磁材料是电子通讯技术中的重要材料,稀土元素都是金属元素,B正确;
C.生活中制作油条的口诀是“一碱、二矾、三钱盐”,其中的“碱”是纯碱,和明矾中的Al3+发生双水解反应产生CO2,使油条疏松多孔,C错误;
D.由于Hg为重金属,重金属离子会污染土壤和地下水,故干电池低汞化、无汞化,有利于减少废电池造成的土壤污染,D正确;
故答案为:C。
11.B
【解析】A.催化剂不改变反应热,且平衡不移动,不能改变反应放出的热量,故A错误;
B.在②→③过程,存在H-H、N≡N键的断裂,形成 N 原子和 H 原子,故B正确;
C.NH3含有N-H键,为极性键,故C错误;
D.合成氨为放热反应。则反应物断键吸收能量小于生成物形成新键释放的能量,故D错误;
故答案为B。
【点睛】考查反应热与焓变,把握反应中能量变化、能量转化为解答的关键,化学反应的本质是构成反应物的化学键断裂,重新形成新的化学键,选项A为易错点,使用催化剂可以改变反应活化能,但不改变反应热效应。
12.C
【解析】A.根据图示,过程①S-H断裂,断开化学键吸收能量,故A错误;
B.根据图示,过程④中-SH与-CH3结合,氢原子与氧原子结合,形成了O-H键和C-S键,故B错误;
C.由图示可知,硫化氢与甲醇合成甲硫醇的反应过程中,-SH取代了甲醇中的-OH,反应类型为取代反应,故C正确;
D.催化剂可降低反应活化能,加快反应速率,但反应前后没有变化,在中间过程参加了反应,故D错误;
故答案选:C。
13.B
【解析】A.冬奥火炬“飞扬”采用氢气作为燃料,氢气燃烧产生大量热量,且产生水不污染环境,因此氢气属于清洁能源,A正确;
B.石墨烯是碳元素的单质,属于无机非金属材料,而不属于高分子材料,B错误;
C.二氧化碳跨临界直冷技术制冰,在该过程中没有新物质产生,因此该过程属于物理变化,C正确;
D.滑雪服采用的剪切增稠液体(STF)材料。在常态下处于粘稠的半液体状态,在高速撞击下分子立刻相互连接形成防护层,因此就可以防止运动员受到伤害,从而对运动员有保护作用,D正确;
故合理选项是B。
14.A
【解析】A. 改变压强,如果改变容器的容积,能改变物质的浓度,则可以改变反应速率,A错误;
B. 使用催化剂可同时增大正、逆反应的速率,B正确;
C. 缩小体积相当于增大压强,能增大反应速率,C正确;
D. 升高温度,吸热方向、放热方向的反应速率均增大,只是吸热方向的速率增大的程度更大,D正确;
故选A。
15.C
【解析】A. N2键能为946kJ/mol,NO键能为632kJ/mol,键能越大,越稳定,则通常情况下,N2比NO稳定,选项A错误;
B. 通常情况下,N2(g)和O2(g)混合反应生成NO需要一定的条件,不能直接生成NO,选项B错误;
C. 断开化学键需要吸收能量为946kJ/mol+498kJ/mol=1444kJ/mol,形成化学键放出的能量为2×632kJ/mol=1264kJ/mol,则1mol N2(g)和1mol O2(g)反应吸收的能量为(1444-1264)kJ=180kJ,则1mol N2(g)和1mol O2(g)反应吸收的能量为180kJ,选项C正确;
D. 吸收能量为1444kJ/mol,放出的能量为1264kJ/mol,说明该反应是吸热反应,1mol N2(g)和1mol O2(g)具有的总能量小于2mol NO(g)具有的总能量,选项D错误,
答案选C。
16. 0.1mol/(L.min) 0.05mol/L 10/11
【解析】列三段式:,
(1)前2min内用X的浓度变化表示的平均反应速率为v(X)= c/ t=0.2/2 mol/(L.min)=0.1mol/(L.min);
(2)2min末时Y的浓度为0.05mol/L;
(3) 以Z的浓度变化表示的反应速率为0.05mol/(L·min),则 c= v t=0.05mol/(L·min)×2min=0.1mol/L,即0.1=0.1n/2,解得n=2,2min末时,c(Z)= 0.1mol/L,反应后总的物质的量(0.05+0.05+0.1+0.3)mol/L×2L=1.0mol,反应前总物质的量0.5+0.6=1.1mol,恢复到反应前温度,体系内压强是反应前压强的10/11。
17. 0.2 mol/(L·s) 20% BD 锌 2.24 2 1 4NH3+3O2=2N2+6H2O
【解析】(1)①v(C)== 0.2 mol/(L·s),故答案为:0.2 mol/(L·s);
②反应开始到2s,c(B)=1mol/L-0.8mol/L=0.2mol/L,所以,B的转化率==20%,故答案为:20%;
③3A (g) + B (g)2C(g):
A.气体总质量m不变,气体的平均相对分子质量保持不变,则M不变,由n=可知,气体的总物质的量n不变,说明已平衡,A错误;
B.容器体积V不变,气体总质量m不变,由可知,无论是否平衡密度均不变,即密度不变,不能说明反应是否平衡,B正确;
C.正反应是气体分子数减小的反应,当容器内气体的总压强保持不变,说明反应已平衡,C错误;
D.反应速率之比=化学计量数之比,即无论是否达到平衡,都有vA︰vB︰vC=3︰2︰2,那么,当vA︰vB︰vC=3︰2︰2时,无法说明反应是否已达平衡,D正确;
E.容器内气体C的物质的量分数保持不变,说明反应已达平衡,E错误;
综上所述,BD符合题意,故答案为:BD;
(2)①Zn元素化合价升高,失电子,则锌为该电池的负极材料。由2Zn+O2=2ZnO可知,每1molO2参与反应时,转移4mol电子,当导线中有0.4 mol电子通过时,消耗O2的物质的量=0.1mol,对应的体积=0.1mol×22.4L/mol=2.24L,故答案为:锌;2.24L;
②结合图可知,NH3失电子,发生氧化反应得到N2和H2O,说明电极1为负极,则电极2位正极,所以,电流方向为:电极2→负载→电极1。该电池的反应物为NH3和O2,生成物为N2和H2O,则该电池的总反应为:4NH3+3O2=2N2+6H2O,故答案为:2;1;4NH3+3O2=2N2+6H2O。
【点睛】燃料电池:氧气在正极得电子,“燃料”在负极失电子。
18.(1) 铜片上有气泡产生
(2) 锌片 铜片 锌片
(3)
【解析】(1)
锌片直接插入稀硫酸中,锌与硫酸反应生成硫酸锌和氢气,化学方程式为:Zn+H2SO4=ZnSO4+H2↑ ;用导线将锌片和铜片连接,该装置为原电池装置,锌为负极,铜片为正极,铜片上氢离子得电子生成氢气,现象是:铜片上有气泡产生;电极反应为:2H++2e =H2↑;
(2)
该原电池中锌片为负极,电子由负极流出,沿着导线流向正极,故电子由锌片经导线流向铜片,说明锌片为负极;
(3)
根据正极的电极反应,电路中转移电子0.2mol时,生成氢气0.1mol,标况下氢气的体积为2.24L。
19.(1)III
(2) I II
(3)甲
(4) 60% P0
(5)BE
【解析】(1)
三次实验中所用H2SO4溶液的浓度相同;实验I和实验II中温度相同,实验II中Na2S2O3溶液的浓度是实验I的两倍,在其他条件相同时,增大反应物的浓度化学反应速率加快,实验II比实验I快;实验II和实验III中所用Na2S2O3溶液、H2SO4溶液的浓度相同,实验III的温度比实验II高,在其他条件相同时,升高温度化学反应速率加快,实验III比实验II快;故反应速率最快的是实验III,即最先变浑浊的是实验III;答案为:III。
(2)
为探究浓度对化学反应速率的影响,应控制温度等其他条件相同,只改变反应物的浓度,故选择实验I和II;答案为:I;II。
(3)
甲中;乙中,同一反应同一时间段内用不同物质表示的化学反应速率之比等于化学计量数之比,则乙中<,甲中反应更快;答案为:甲。
(4)
X、Y起始物质的量依次为0.4mol、1mol,该反应达最大限度时X、Y的物质的量依次为0.7mol、0.4mol,从起始到平衡,Y物质的量减少0.6mol,X物质的量增加0.3mol,则Y代表NO2,X代表N2O4;该反应达最大限度时Y的转化率为=60%;起始气体总物质的量为1.4mol,平衡气体总物质的量为1.1mol,恒温恒容时气体的压强之比等于气体物质的量之比,P0:P平=1.4mol:1.1mol,P平=P0;答案为:60%;P0。
(5)
A.达到平衡时各物质物质的量保持不变,但不一定相等,容器中X与Y物质的量相等不能说明反应达到平衡状态,A不选;
B.N2O4为无色,NO2为红棕色,容器内气体的颜色不再变化,说明NO2的浓度不再变化,能说明反应达到平衡状态,B选;
C.没有指明是正反应速率、还是逆反应速率,不能说明反应达到平衡状态,C不选;
D.该反应中所有物质都呈气态,建立平衡的过程中混合气体的总质量始终不变,恒容容器的容积不变,混合气体的密度始终不变,容器内气体的密度不再发生变化不能说明反应达到平衡状态,D不选;
E.该反应的正反应是气体分子数增大的反应,该反应中所有物质都呈气态,建立平衡的过程中混合气体的总质量始终不变,混合气体的总物质的量变化,混合气体的平均相对分子质量变化,容器内气体的平均相对分子质量不再改变能说明反应达到平衡状态,E选;
答案选BE。
20. 探究浓度对反应速率的影响 向反应物中加入等量同种催化剂(或升高相同温度) 升高温度,反应速率加快 对过氧化氢分解的催化效果更好 产生20气体所需的时间 0.006 60% 0.08 1
【解析】(1)实验①和②的浓度不同,则该实验的目的为探究浓度对化学反应速率的影响;同学甲在进行实验时并没有观察到明显现象。资料显示,通常条件下过氧化氢稳定,不易分解。为了便于比较,需要加快反应速率,可以向反应物中加入等量同种催化剂(或将盛有反应物的试管放在同一热水浴中,升高相同温度),故答案为:探究浓度对反应速率的影响;向反应物中加入等量同种催化剂(或将盛有反应物的试管放在同一热水浴中,升高相同温度);
(2)由图可知,③、⑤中⑤的反应速率大,说明升高温度,反应速率加快;③、④中④的反应速率小,说明MnO2对过氧化氢分解的催化效果更好,故答案为:升高温度,反应速率加快;MnO2对过氧化氢分解的催化效果更好;
(3)反应是通过反应速率分析的,根据,所以实验中需要测量的数据是时间(或收集一定体积的气体所需要的时间),故答案为:产生20mL气体所需的时间;
(4)①由图可知,A、B的物质的量减小,C的物质的量增加,且t1时物质的量不变,说明该反应为可逆反应,A、C的物质的量的变化量之比为(0.15-0.06)∶(0.11-0.05)=3∶2,反应过程中混合气体的平均相对分子质量不变,则反应为3A B+2C,故答案为:3A B+2C;
②若t1=10时,则内以C物质浓度变化表示的反应速率;t1时,A的转化率为,故答案为:0.006;60%;
③由A和C的变化量之比为(0.15-0.06)∶(0.11-0.05)=3∶2,可以推出B的变化量为0.03mol/L,容器的体积为4L,所以B起始的物质的量是(0.05-0.03)×4mol=0.08mol;根据阿伏加德罗定律可知,在同温同体积条件下,气体的压强之比等于其物质的量之比,也等于其分子数之比。由于反应前后气体的分子数保持不变,所以平衡时体系内的压强保持不变,为初始状态的1倍,故答案为:0.08mol;1。
21. AD A A 放出 b 放出 b-a
【解析】Ⅰ.(1)已知H-Cl键的键能为431 kJ·mol-1,表示1 mol 气态H 原子与1 mol气态 Cl原子结合生成1 mol H-Cl键时会放出431 kJ的热量,或拆开1 mol H-Cl键形成1 mol H原子和1 mol的Cl原子吸收431 kJ的热量,故合理选项是AD;
(2)根据已知条件可知键能由大到小顺序为:H-F>H-H>H-Cl>H-Br,物质内含有的化学键的键能越大,断裂该化学键吸收能量越高,含有该化学键的物质就越稳定。由于H-F的键能最大,故物质受热分解时,最稳定的物质是HF,因此合理选项是A;
(3) A.氮气的化学性质比氧气稳定是由于N2中2个N原子通过3个共价键结合,O2中2个O原子通过2个共价键结合,由于N≡N的键能比O=O的键能大,断裂消耗能量更高,因此N2比O2稳定,A符合题意;
B.单质溴、单质碘都是由双原子分子构成的物质,分子之间通过分子间作用力结合。分子间作用力越大,克服分子间作用力使物质融化、气化消耗的能量就越高,物质的熔沸点就越高。由于分子间作用力:I2>Br2,所以常温常压下溴呈液态,碘呈固态,与分子内化学键的强弱及键能大小无关,B不符合题意;
C.稀有气体一般很难发生化学反应是由于稀有气体是单原子分子,分子中不存在化学键,原子本身已经达到最外层2个或8个电子的稳定结构,与化学键的键能大小无关,C不符合题意;
D.硝酸易挥发而硫酸难挥发是由于HNO3、H2SO4都是由分子构成的物质,由于分子间作用力:HNO3<H2SO4,所以物质的熔沸点:HNO3<H2SO4,因此硝酸易挥发而硫酸难挥发,与分子内化学键的强弱及键能大小无关,D不符合题意;
故合理选项是A;
Ⅱ.(1)根据图示可知1 mol N原子和3 mol H原子的能量比1 mol NH3的能量高b kJ,所以由1 mol N原子和3 mol H原子生成1 mol NH3(g)的过程会放出b kJ的热量;
(2)根据图示可知0.5 mol N2(g)和1.5 mol H2(g)的能量比1 mol NH3(g)的能量高(b-a)kJ,因此当0.5 mol N2(g)和1.5 mol H2(g)发生反应生成1 mol NH3(g)时会将多余的能量释放出来,反应过程放出热量为(b-a) kJ。
22.(1)242
(2) acef bd
(3) A Cu2++2e-=Cu D>A>B>C
【解析】(1)
断裂1molH—H键需要吸热436kJ,断裂0.5molO=O键需要吸热=248kJ,形成2molH—O键需要放热463kJ×2=926kJ,则生成1mol可以放出(926-436-248)kJ=242kJ热量;
(2)
因常见的放热反应有:所有的燃烧、所有的中和反应、金属和酸的反应、金属与水的反应、大多数化合反应、铝热反应等,所以放热反应有: acef,故答案为: acef;
常见的吸热反应为:大多数的分解反应,氢氧化钡和氯化铵的反应、焦炭和二氧化碳、焦炭和水的反应等,所以吸热反应有: bd,故答案为: bd;
(3)
①装置甲中金属A不断溶解,说明A电极失电子被氧化,为原电池负极,B电极是正极,则溶液中的阴离子移向负极,即A极;
②装置乙中C的质量增加,说明C电极是正极,正极的电极反应式为;
③装置甲中A为负极,说明活动性:A>B;装置乙中C为正极,说明活动性:B>C;装置丙中,A上有气体产生,说明A电极为正极,活动性:D>A;
综上所述,四种金属活动性由强到弱的顺序是D>A>B>C。
23. A A 放热 Cl2
【解析】(1)和(2)根据键能越大,物质越稳定,本身能量越低进行判断。
(3)和(4)根据焓变公式,焓变等于反应物的键能之和减去生成物的键能之和进行判断焓变大小,从而判断反应是放热还是吸热。
【解析】(1)、(2)破坏1mol物质中的化学键所消耗的能量越高,则该物质越稳定,其本身具有的能量越低。故答案(1)选A,(2)选A。
(3)、(4)断开1mol Cl—Cl键和1mol H—H键需吸收能量:,而形成2mol H—Cl键放出的能量为,所以在反应中每生成2mol HCl放出的热量,同理可计算出、反应中每生成2mol HBr、2mol HI分别放出103kJ、9kJ的热量。故(3)答案:放热,(4)答案:Cl2。
【点睛】根据键能的含义及与反应能量变化关系进行判断反应类型。
24.(1)1.4
(2) H2 2e-+2OH-=2H2O 1.93×103 CH3OH 6e-+8OH-=CO+6H2O 30NA
(3)VB2+16OH- 11e-=VO+2B(OH)+4H2O
【解析】(1)
Cu(s)+2Ag+(aq)=Cu2+(aq)+2Ag(s)设计原电池,若用铜、银做两个电极,开始两电极质量相等,当电路中转移0.01mol电子时,则负极有0.005mol铜溶解,正极有0.01mol银生成,因此两电极的质量差为0.01mol×108g mol 1+0.005mol×64g mol 1=1.4g;故答案为:1.4;
(2)
①假设使用的“燃料”是氢气(H2),根据图中电子转移方向得到a为负极,b为正极,则a极的电极反应式为H2 2e-+2OH-=2H2O。若电池中氢气(H2)通入量为224mL(标准状况)即物质的量为0.01mol,且反应完全,电子转移为0.02mol,则理论上通过电流表的电量为0.02mol ×6.02×1023mol 1 ×1.6×10 19C ≈1.93×103C;故答案为:H2 2e-+2OH-=2H2O;1.93×103;
②假设使用的“燃料”是甲醇(CH3OH),甲醇失去电子变为碳酸根,则a极的电极反应式为CH3OH 6e-+8OH-=CO+6H2O,如果消耗甲醇160g即物质的量为5mol,假设化学能完全转化为电能,则转移电子的数目为5mol×6×NAmol 1=30NA;故答案为:CH3OH 6e-+8OH-=CO+6H2O;30NA;
(3)
根据电池总反应为4VB2+11O2+20OH-+6H2O=8B(OH)+4VO,则VB2电极为负极,反应生成B(OH)、VO,则该电极发生的电极反应为VB2+16OH- 11e-=VO+2B(OH)+4H2O;故答案为:VB2+16OH- 11e-=VO+2B(OH)+4H2O。
25. AC B 0.85 >
【解析】(1) 属于氧化还原反应,而且是放热反应,理论上能设计为原电池。则反应B、D能设计成原电池、反应A、C是非氧化还原反应、理论上不可以用于设计原电池,故答案为AC。
(2)内电路中阴离子移向负极、阳离子移向正极,酸性条件下生成水,正极电极反应式为:O2+4H++4e-=2H2O;燃料电池中化学能转化为电能,能量转化效率高
燃料电池中,通入燃料的一极为负极,还原剂失去电子发生氧化反应,电子沿着导线流向正极,通入助燃物的一极为正极,正极上发生还原反应,则a为负极、B处电极入口通氧气,碱性条件下氧气得电子、和水反应生成氢氧根离子,其电极反应式为。当消耗标准状况下氢气11.2L时,按可知,假设能量转化率为85%,则导线中转移电子的物质的量为。
(3)①X的物质的量增加、Y的物质的量减小,所以Y是反应物、X是生成物,物质的量变化值之比等与化学计量数之比,即Y与X的化学计量数之比为(0.4-0.2):(0.2-0.1)=2:1,故该反应的化学方程式为。
②反应开始至2min时,Y的平均反应速率为。
③2min时,平衡还未建立,体系处于从正反应建立平衡的途中,故v正 v逆。