10.2 事件的相互独立性(同步练习)
一、选择题
1.下列事件中,A,B是相互独立事件的是( )
A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”
B.袋中有2白,2黑的小球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”
C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”
D.A=“人能活到20岁”,B=“人能活到50岁”
2.甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个螺母,其中有180个A型的.今从甲、乙两盒中各任取一个,则恰好可配成A型螺栓的概率为( )
A. B. C. D.
3.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是( )
A.0.56 B.0.92
C.0.94 D.0.96
4.甲、乙两人参加知识竞赛,甲、乙两人能荣获一等奖的概率分别为和,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )
A. B. C. D.
5.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是( )
A.互斥事件 B.相互独立事件
C.对立事件 D.不相互独立事件
6.若P(AB)=,P()=,P(B)=,则事件A与B的关系是( )
A.事件A与B互斥 B.事件A与B对立
C.事件A与B相互独立 D.事件A与B既互斥又独立
7.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C的关系是( )
A.A与B,A与C均相互独立 B.A 与B相互独立,A与C互斥
C.A与B,A与C均互斥 D.A与B互斥,A与C相互独立
8.甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B( )
A.相互独立但不互斥 B.互斥但不相互独立
C.相互独立且互斥 D.既不相互独立也不互斥
9.(多选)甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为,乙队获胜的概率为.若前两局中乙队以2∶0领先,则下列结论正确的是( )
A.甲队获胜的概率为 B.乙队以3∶0获胜的概率为
C.乙队以3∶1获胜的概率为 D.乙队以3∶2获胜的概率为
二、填空题
10.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为________
11.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________
12.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________
13.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A )=_______;P()=_______
三、解答题
14.甲、乙两名跳高运动员在一次2米跳高中成功的概率分别为0.7,0.6,且每次试跳成功与否相互之间没有影响,求:
(1)甲试跳三次,第三次才成功的概率;
(2)甲、乙两人在第一次试跳中至少有一人成功的概率.
15.计算机考试分理论考试与实际操作考试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书.
甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,甲、乙、丙每部分考试是否合格互不影响,且三人两部分考试结果也互不影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性更大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
16.判断下列各对事件是不是相互独立事件.
(1)甲组有3名男生,2名女生,乙组有2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;
(2)一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的水果放回筐内,再从筐内任意取出1个,取出的是梨”;
(3)一个布袋里有大小完全相同的3个白球,2个红球,“从中任意取1个球是白球”与“取出的球不放回,再从中任意取1个球是红球”.
参考答案及解析:
一、选择题
1.A 解析:把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,A,B应为互斥事件,不相互独立;D是条件概率,事件B受事件A的影响.故选A.
2.C 解析:设“从甲盒中取一螺杆为A型螺杆”为事件A,“从乙盒中取一螺母为A型螺母”为事件B,则A与B相互独立,P(A)==,P(B)==,则从甲、乙两盒中各任取一个,恰好可配成A型螺栓的概率为P=P(A)P(B)=×=.
3.C 解析:∵两人都没有击中的概率为0.2×0.3=0.06,∴目标被击中的概率为1-0.06=0.94.
4.D 解析:根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是×+×=.
5.D 6.C
7.A 解析:由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.
8.A 解析:对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.
9.AB
二、填空题
10.答案: 解析:设此队员每次罚球的命中率为p,则1-p2=,所以p=.]
11.答案: 解析:由题意知P=×+×=
12.答案:0.98
解析:至少有一个准时响的概率为1-(1-0.90)×(1-0.80)=1-0.10×0.20=0.98
13.答案:, 解析:∵P(A)=,P(B)=,∴P()=,P()=,∴P(A )=P(A)P()=×=,P( )=P()P()=×=
三、解答题
14.解:记“甲第i次试跳成功”为事件Ai,“乙第i次试跳成功”为事件Bi(i=1,2,3),
依题意得P(Ai)=0.7,P(Bi)=0.6,且Ai,Bi相互独立.
(1)“甲试跳三次,第三次才成功”为事件12A3,且这三次试跳相互独立.
∴P(12A3)=P(1)P(2)P(A3)=0.3×0.3×0.7=0.063.
(2)记“甲、乙两人在第一次试跳中至少有一人成功”为事件C.
P(C)=1-P(1)P(1)=1-0.3×0.4=0.88.
15.解:(1)记事件A=“甲获得合格证书”,事件B=“乙获得合格证书”,事件C=“丙获得合格证书”,则
P(A)=×=,P(B)=×=,P(C)=×=.
因为P(C)>P(B)>P(A),所以丙获得合格证书的可能性更大.
(2)设事件D=“三人考试后恰有两人获得合格证书”,则
P(D)=P(AB)+P(AC)+P(BC)=××+××+××=,
即甲、乙、丙三人进行理论与实际操作两项考试后,恰有两人获得合格证书的概率为.
16.解:(1)“从甲组中选出1名男生”这一事件是否发生对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以二者是相互独立事件.
(2)由于把取出的水果又放回筐内,故“从中任意取出1个,取出的是苹果”这一事件是否发生对“再从筐内任意取出1个,取出的是梨”这一事件发生的概率没有影响,所以二者是相互独立事件.
(3)不放回地取球,前者的发生影响后者发生的概率,所以二者不是相互独立事件.