10.1.3 古典概型(同步检测)
一、选择题
1.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
2.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合再任意排成一行,则得到的数能被2或5整除的概率是( )
A.0.2 B.0.4 C.0.6 D.0.8
3.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注.大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘初始状态,自右向左,分别是个位、十位、百位……,上面一颗珠(简称上珠)代表5,下面一颗珠(简称下珠)代表1,即五颗下珠的大小等于同组一颗上珠的大小.现在从个位和十位这两组中随机选择往下拨一颗上珠,从个位、十位和百位这三组中随机往上拨2颗下珠,算盘表示的数能被5整除的概率是( )
A. B. C. D.
4.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为( )
A. B. C. D.
5.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回地再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
6.《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹王中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
7.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )
A. B. C. D.
8.(多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )
A.两件都是一等品的概率是 B.两件中有1件是次品的概率是
C.两件都是正品的概率是 D.两件中至少有1件是一等品的概率是
二、填空题
9.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量p=(m,n),q=(2,6),则向量p与q共线的概率为________
10.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是,则
n=________
11.从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,则事件A的概率为________
12.在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为________
13.下列试验是古典概型的为________.(填序号)
①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;
②同时掷两颗骰子,点数和为6的概率;
③近三天中有一天降雨的概率;
④10人站成一排,其中甲、乙相邻的概率.
三、解答题
14.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:
日期 3月1日 3月2日 3月3日 3月4日 3月5日
温差x/℃ 10 11 13 12 8
发芽数y/颗 23 25 30 26 16
(1)求这5天发芽数的中位数;
(2)求这5天的平均发芽率;
(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,用(m,n)的形式列出所有基本事件,并求满足“”的概率.
15.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的2道题都是甲类题的概率;
(2)所取的2道题不是同一类题的概率.
16.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
参考答案及解析:
一、选择题
1.D
2.C 解析:一个五位数能否被2或5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,个位数是1,2,3,4,5是等可能的,“被2或5整除”这一事件等价于个位数字为2,4,5,
∴所求概率为=0.6.故选:C.
3.B
4.C 解析:从八卦中任取一卦,基本事件总数n=8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m=3,∴所求概率为P=.故选C.
5.A 6.A
7.C 解析:样本空间的样本点为:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个,甲站在中间的事件包括乙甲丙、丙甲乙,共2个,所以甲站在中间的概率是P==.
8.BD
二、填空题
9.答案:
10.答案:2 解析:由题意可知:=,解得n=2.
11.答案: 解析:不放回地随机抽取2个小球的样本空间Ω= {(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21)},共12个,事件A包含的样本点为:(0,21),(0,22),(21,0),(22,0),共4个.∴P(A)==.
12.答案: 解析:用(A,B,C)表示A,B,C通过主席台的次序,则试验的样本空间Ω= {(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)},共6个样本点,其中事件B先于A,C通过的有(B,C,A)和(B,A,C),共2个样本点,故所求概率P==.
13.答案:①②④ 解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.
三、解答题
14.解:(1)由题意知,发芽数按从小到大的顺序排列为16,23,25,26,30,所以这5天发芽数的中位数是25.
(2)这5天的平均发芽率为:×100%=24%.
(3)用(x,y)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10个基本事件.
记“”为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.
所以P(A)=,即事件“”的概率为.
15.解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,这个试验的样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点,且每个样本点出现的可能性是等可能的,可用古典概型来计算概率.
用A表示“所取的2道题都是甲类题”这一事件,则A={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共含有6个样本点,所以P(A)==.
(2)由(1)知试验的样本空间共有15个样本点,用B表示“所取的2道题不是同一类题”这一事件,则B={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)},共包含8个样本点,所以P(B)=.
16.解:用数对(x,y)表示儿童参加活动先后记录的数,
则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,所以样本点总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的样本点个数共5个,
即A={(1,1),(1,2),(1,3),(2,1),(3,1)}.
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的样本点共6个,即B={(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)}.
所以P(B)==.
事件C包含的样本点共5个,即C={(1,4),(2,2),(2,3),(3,2),(4,1)}.
所以P(C)=.因为>,所以小亮获得水杯的概率大于获得饮料的概率.