古典概型能力提升(含解析)新人教A版必修3
1.设a是从集合{1,2,3,4}中随机取出的一个数,b是从集合{1,2,3}中随机取出的一个数,构成一个基本事件(a,b).记“这些基本事件中,满足logba≥1”为事件E,则E发生的概率是( )
A. B.
C. D.
解析:选B.试验发生包含的事件是分别从两个集合中取两个数字,共有4×3=12种结果,满足条件的事件是满足logba≥1,可以列举出所有的事件,当b=2时,a=2,3,4,当b=3时,a=3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是.
2.已知直线l1:x-2y-1=0,直线l2:ax-by-1=0,其中a,b∈{1,2,3,4,5,6},则直线l1∩l2=?的概率为________.
解析:∵a,b∈{1,2,3,4,5,6},
∴a,b各有6种取法,
∴总事件数是36,
而满足条件的只有两组数a=2,b=4;a=3,b=6.
∴P==.
答案:
3.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况.
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平?说明你的理由.
解:(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示)为:(2,3),(2,4), (2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.
(2)甲抽到红桃3,则乙抽到的牌只能是红桃2,红桃4,方片4,因此乙抽到的牌的数字大于3的概率为.
(3)不公平.由甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种,甲胜的概率为P1=,乙胜的概率为P2=.∵<,∴此游戏不公平.