2022-2023学年北师大版数学七年级下册第6章概率初步期末复习试卷 (含答案)

文档属性

名称 2022-2023学年北师大版数学七年级下册第6章概率初步期末复习试卷 (含答案)
格式 doc
文件大小 506.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-06-15 19:53:09

图片预览

文档简介

2023年北师大版数学七年级下册
《概率初步》期末复习试卷
一、选择题
1.下列词语所描述的事件是随机事件的是( )
A.守株待兔 B.拔苗助长 C.刻舟求剑 D.竹篮打水
2.下列事件中,属于必然事件的是( )
A.明天我市下雨
B.抛一枚硬币,正面朝下
C.购买一张福利彩票中奖了
D.掷一枚骰子,向上一面的数字一定大于零
3.下列事件是必然发生事件的是( )
A.打开电视机,正在转播足球比赛
B.小麦的亩产量一定为1000公斤
C.在只装有5个红球的袋中摸出1球,是红球
D.农历十五的晚上一定能看到圆月
4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是(  )
A.至少有1个球是黑球 B.至少有1个球是白球
C.至少有2个球是黑球 D.至少有2个球是白球
5.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是(  )
A. B. C. D.
6.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为(  )
A. B. C. D.
7.一个不透明的袋子中装有9个小球,其中6个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
8.一只小狗在如图所示的方砖上走来走去,最终停在阴影方砖上的概率是( ).
A. B. C. D.
9.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是(  )
A. B. C. D.
10.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“967”就是一个“V数”.若十位上的数字为4,则从3,5,7,9中任选两数,能与4组成“V数”的概率是( )
A. B. C. D.
11.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )
A. B. C. D.
12.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:
根据上表可知该队员一次投篮命中的概率大约是(  )
A.0.9 B.0.8 C.0.7 D.0.72
二、填空题
13.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是________.
14.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为________.
15.新学期开学,刚刚组建的七年级(1)班有男生30人,女生24人,欲从该班级中选出一名值日班长,任何人都有同样的机会,则这班选中一名男生当值日班长的概率是_____.
16.在一个不透明布袋里装有3个白球、2个红球和a个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则a等于   .
17.现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是 .
18.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上
从中任选一头猪,质量在65kg以上的概率是___________.
三、解答题
19.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日﹣20日),小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是   .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.
20.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是   ;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
21.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.
(1)随机从箱子里取出1个球,则取出黄球的概率是多少?
(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.
22.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球.球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内.每消费满200元.就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券.可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
23.小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.
24.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.
(1)她们在一次试验中共掷骰子60次,试验的结果如下:
①填空:此次试验中“5点朝上”的频率为________;
②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?
(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.
参考答案
1.A
2.D
3.C;
4.A
5.D
6.A.
7.A
8.B;
9.D.
10.D
11.A
12.D.
13.答案为:0.5.
14.答案为:  
15.答案为:.
16.答案为:5.
17.答案为:.
18.答案为:0.1,0.2,0.4,0.2,0.075,0.025;0.1
19.解:(1)∵小黄同学是9月份中旬出生,
∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;
故答案为1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918,;
密码数能被3整除的概率0.3.
20.解:(1)因为有A,B,C3种等可能结果,
所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.
(2)树状图如图所示:
共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.
21.解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;
(2)画树状图得:
由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.
22.解:(1)10,50;
(2)解法一(树状图):
从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
因此P(不低于30元)=;
23.解:这个游戏对双方不公平.
理由:列表如下:
所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有:(1,1),(2,1),
(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,
故小明获胜的概率为:=,则小刚获胜的概率为:=,
∵≠,∴这个游戏对两人不公平.
24.解:(1)①∵试验中“5点朝上”的次数为20,总次数为60,
∴此次试验中“5点朝上”的频率为=.②小红的说法不正确.
理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才会慢慢接近概率.而她们的试验次数太少,没有代表性,
∴小红的说法不正确.
(2)列表如下:
小红和小颖 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,
∴两枚骰子朝上的点数之和为7时的概率最大,为=.