课题:八年级数学(上)第三章第三节“轴对称与坐标变化”前置作业
班级: 姓名: 学科: 日期:
家长检查签名: 小组检查意见: 小组长签名:
一、学习目标: 1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系. 2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
二、资料准备:三角板、方格纸若干张。
三、学习过程: 有了坐标系,图像上的点就对应着坐标了,反过来坐标就可以反应点了。相应地,点的运动变化自然导致坐标的变化,坐标的变化也可以从数量的角度反应图形的变化。不妨先研究我们熟悉的轴对称。 活动1:探索两个关于坐标轴对称的图形的坐标关系 1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。 两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗? 2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。 变式。发展 3.如果关于x轴对称呢? 在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系? 归纳。概括 4.关于x轴对称的两点,它们的横坐标 ,纵坐标 ; 关于y轴对称的两点,它们的横坐标 ,纵坐标 。 运用。巩固 5.已知点P(2a-3,3),点A(-1,3b+2), (1)如果点P与点A关于x轴对称,那么a+b= ; (2)如果点P与点A关于y轴对称,那么a+b= 。 活动2:探索坐标变化引起的图形变化 反过来,坐标具有上述关系的点,一定关于坐标轴对称吗?我们先做几个具体的,找找经验。 1(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),你得到了一个怎样的图案? (2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢? 变式。拓展2.如果1(1)中所得图案的各个顶点的横坐标保持不变,纵坐标分别变为原来的-1倍,顺次连接所得的点,你会得到怎样的图案?这个图案与原图案有怎样的位置关系呢? *3.如果纵坐标、横坐标都分别变为原来的-1倍,得到的图形与原来的图形又有怎样的关系呢?说说你的判断和理由。 归纳。概括 4.横坐标相同、纵坐标相反的两点, ;横坐标相反、纵坐标相同的两点, 。 运用。巩固 5.五个点的坐标如下:A(-1,2),B(1,2),C(2,-1),D(-1,-2),E(2,1),其中关于x轴对称的点有 ,关于y轴对称的有 。 活动4:自主反馈 1. 已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 *2.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )。 A.4 B.5 C.6 D.7
五、小节与收获: 1、本节课你有哪些收获?你还有那些疑惑? 2、前置作业准备时的疑难解决了吗?