专题07 平面向量-【四年真题】四年(2020-2023)高考数学真题分项汇编(全国通用)(含解析)

文档属性

名称 专题07 平面向量-【四年真题】四年(2020-2023)高考数学真题分项汇编(全国通用)(含解析)
格式 doc
文件大小 4.4MB
资源类型 试卷
版本资源 人教A版(2019)
科目 数学
更新时间 2023-06-20 16:53:50

图片预览

文档简介

中小学教育资源及组卷应用平台
【四年真题】四年(2020-2023)高考数学真题分项汇编(全国通用)
专题07 平面向量
一、单选题
1.(2020·山东·统考高考真题)已知平行四边形,点,分别是,的中点(如图所示),设,,则等于( )
A. B. C. D.
2.(2022·全国·统考高考真题)已知向量,则( )
A.2 B.3 C.4 D.5
3.(2023·全国·统考高考真题)已知向量,则( )
A. B. C. D.
4.(2023·全国·统考高考真题)已知向量,若,则( )
A. B.
C. D.
5.(2020·全国·统考高考真题)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是( )
A. B. C. D.
6.(2023·全国·统考高考真题)正方形的边长是2,是的中点,则( )
A. B.3 C. D.5
7.(2020·全国·统考高考真题)已知向量 ,满足, ,,则( )
A. B. C. D.
8.(2020·海南·统考高考真题)已知P是边长为2的正六边形ABCDEF内的一点,则 的取值范围是( )
A. B.
C. D.
9.(2020·海南·高考真题)在中,D是AB边上的中点,则=( )
A. B. C. D.
10.(2020·山东·统考高考真题)已知点,,点在函数图象的对称轴上,若,则点的坐标是( )
A.或 B.或
C.或 D.或
11.(2021·浙江·统考高考真题)已知非零向量,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
12.(2023·北京·统考高考真题)已知向量满足,则( )
A. B. C.0 D.1
13.(2022·全国·统考高考真题)在中,点D在边AB上,.记,则( )
A. B. C. D.
14.(2022·全国·统考高考真题)已知向量满足,则( )
A. B. C.1 D.2
15.(2022·全国·统考高考真题)已知向量,若,则( )
A. B. C.5 D.6
16.(2023·全国·统考高考真题)已知的半径为1,直线PA与相切于点A,直线PB与交于B,C两点,D为BC的中点,若,则的最大值为( )
A. B.
C. D.
17.(2023·全国·统考高考真题)已知向量满足,且,则( )
A. B. C. D.
18.(2022·北京·统考高考真题)在中,.P为所在平面内的动点,且,则的取值范围是( )
A. B. C. D.
二、多选题
19.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
三、填空题
20.(2021·全国·统考高考真题)已知向量,若,则__________.
21.(2021·北京·统考高考真题)已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则
________;________.
22.(2022·全国·统考高考真题)已知向量.若,则______________.
23.(2022·天津·统考高考真题)在中,,D是AC中点,,试用表示为___________,若,则的最大值为____________
24.(2020·全国·统考高考真题)已知单位向量,的夹角为45°,与垂直,则k=__________.
25.(2020·全国·统考高考真题)设为单位向量,且,则______________.
26.(2020·全国·统考高考真题)设向量,若,则______________.
27.(2020·北京·统考高考真题)已知正方形的边长为2,点P满足,则_________;_________.
28.(2021·全国·统考高考真题)已知向量,若,则_________.
29.(2021·全国·统考高考真题)已知向量.若,则________.
30.(2021·全国·高考真题)若向量满足,则_________.
31.(2021·全国·统考高考真题)已知向量,,,_______.
32.(2022·全国·统考高考真题)设向量,的夹角的余弦值为,且,,则_________.
33.(2023·全国·统考高考真题)已知向量,满足,,则______.
34.(2023·天津·统考高考真题)在中,,,点为的中点,点为的中点,若设,则可用表示为_________;若,则的最大值为_________.
35.(2020·江苏·统考高考真题)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是________.
36.(2021·天津·统考高考真题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为____________;的最小值为____________.
37.(2022·浙江·统考高考真题)设点P在单位圆的内接正八边形的边上,则的取值范围是_______.
38.(2020·浙江·统考高考真题)设,为单位向量,满足,,,设,的夹角为,则的最小值为_______.
39.(2020·天津·统考高考真题)如图,在四边形中,,,且,则实数的值为_________,若是线段上的动点,且,则的最小值为_________.
40.(2021·浙江·统考高考真题)已知平面向量满足.记向量在方向上的投影分别为x,y,在方向上的投影为z,则的最小值为___________.
四、解答题
41.(2020·山东·统考高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.
(1)求抛物线的标准方程;
(2)若过点的直线与抛物线交于,两点,且,求直线的方程.
参考答案:
1.A
【分析】利用向量的线性运算,即可得到答案;
【详解】连结,则为的中位线,

故选:A
2.D
【分析】先求得,然后求得.
【详解】因为,所以.
故选:D
3.B
【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.
【详解】因为,所以,
则,,
所以.
故选:B.
4.D
【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
【详解】因为,所以,,
由可得,,
即,整理得:.
故选:D.
5.D
【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.
【详解】由已知可得:.
A:因为,所以本选项不符合题意;
B:因为,所以本选项不符合题意;
C:因为,所以本选项不符合题意;
D:因为,所以本选项符合题意.
故选:D.
【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.
6.B
【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.
【详解】方法一:以为基底向量,可知,
则,
所以;
方法二:如图,以为坐标原点建立平面直角坐标系,
则,可得,
所以;
方法三:由题意可得:,
在中,由余弦定理可得,
所以.
故选:B.
7.D
【分析】计算出、的值,利用平面向量数量积可计算出的值.
【详解】,,,.

因此,.
故选:D.
【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
8.A
【分析】首先根据题中所给的条件,结合正六边形的特征,得到在方向上的投影的取值范围是,利用向量数量积的定义式,求得结果.
【详解】
的模为2,根据正六边形的特征,
可以得到在方向上的投影的取值范围是,
结合向量数量积的定义式,
可知等于的模与在方向上的投影的乘积,
所以的取值范围是,
故选:A.
【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.
9.C
【分析】根据向量的加减法运算法则算出即可.
【详解】
故选:C
【点睛】本题考查的是向量的加减法,较简单.
10.C
【分析】由二次函数对称轴设出点坐标,再由向量垂直的坐标表示计算可得.
【详解】由题意函数图象的对称轴是,设,
因为,所以,解得或,所以或,
故选:C.
11.B
【分析】考虑两者之间的推出关系后可得两者之间的条件关系.
【详解】如图所示,,当时,与垂直,,所以成立,此时,
∴不是的充分条件,
当时,,∴,∴成立,
∴是的必要条件,
综上,“”是“”的必要不充分条件
故选:B.
12.B
【分析】利用平面向量数量积的运算律,数量积的坐标表示求解作答.
【详解】向量满足,
所以.
故选:B
13.B
【分析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
14.C
【分析】根据给定模长,利用向量的数量积运算求解即可.
【详解】解:∵,
又∵
∴9,

故选:C.
15.C
【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
【详解】解:,,即,解得,
故选:C
16.A
【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得,或然后结合三角函数的性质即可确定的最大值.
【详解】如图所示,,则由题意可知:,
由勾股定理可得

当点位于直线异侧时,设,
则:
,则
当时,有最大值.

当点位于直线同侧时,设,
则:
,则
当时,有最大值.
综上可得,的最大值为.
故选:A.
【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.
17.D
【分析】作出图形,根据几何意义求解.
【详解】因为,所以,
即,即,所以.
如图,设,
由题知,是等腰直角三角形,
AB边上的高,
所以,
,
.
故选:D.
18.D
【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则,,,
因为,所以在以为圆心,为半径的圆上运动,
设,,
所以,,
所以
,其中,,
因为,所以,即;
故选:D

19.AC
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
20.
【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.
【详解】因为,所以由可得,
,解得.
故答案为:.
【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设,
,注意与平面向量平行的坐标表示区分.
21. 0 3
【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.
【详解】以交点为坐标原点,建立直角坐标系如图所示:
则,
,,
.
故答案为:0;3.
22./
【分析】直接由向量垂直的坐标表示求解即可.
【详解】由题意知:,解得.
故答案为:.
23.
【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
【详解】方法一:
,,
,当且仅当时取等号,而,所以.
故答案为:;.
方法二:如图所示,建立坐标系:
,,
,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
故答案为:;.
24.
【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k的值.
【详解】由题意可得:,
由向量垂直的充分必要条件可得:,
即:,解得:.
故答案为:.
【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.
25.
【分析】整理已知可得:,再利用为单位向量即可求得,对变形可得:,问题得解.
【详解】因为为单位向量,所以
所以
解得:
所以
故答案为:
【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.
26.5
【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.
【详解】由可得,
又因为,
所以,
即,
故答案为:5.
【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.
27.
【分析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,求得点的坐标,利用平面向量数量积的坐标运算可求得以及的值.
【详解】以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,
则点、、、,

则点,,,
因此,,.
故答案为:;.
【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点的坐标是解答的关键,考查计算能力,属于基础题.
28.
【分析】利用向量平行的充分必要条件得到关于的方程,解方程即可求得实数的值.
【详解】由题意结合向量平行的充分必要条件可得:,
解方程可得:.
故答案为:.
29..
【分析】利用向量的坐标运算法则求得向量的坐标,利用向量的数量积为零求得的值
【详解】,
,解得,
故答案为:.
【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量垂直的充分必要条件是其数量积.
30.
【分析】根据题目条件,利用模的平方可以得出答案
【详解】∵

∴.
故答案为:.
31.
【分析】由已知可得,展开化简后可得结果.
【详解】由已知可得,
因此,.
故答案为:.
32.
【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得.
【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,
又,,所以,
所以.
故答案为:.
33.
【分析】法一:根据题意结合向量数量积的运算律运算求解;法二:换元令,结合数量积的运算律运算求解.
【详解】法一:因为,即,
则,整理得,
又因为,即,
则,所以.
法二:设,则,
由题意可得:,则,
整理得:,即.
故答案为:.
34.
【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
【详解】空1:因为为的中点,则,可得,
两式相加,可得到,
即,则;
空2:因为,则,可得,
得到,
即,即.
于是.
记,
则,
在中,根据余弦定理:,
于是,
由和基本不等式,,
故,当且仅当取得等号,
则时,有最大值.
故答案为:;.

35.或0
【分析】根据题设条件可设,结合与三点共线,可求得,再根据勾股定理求出,然后根据余弦定理即可求解.
【详解】∵三点共线,
∴可设,
∵,
∴,即,
若且,则三点共线,
∴,即,
∵,∴,
∵,,,
∴,
设,,则,.
∴根据余弦定理可得,,
∵,
∴,解得,
∴的长度为.
当时, ,重合,此时的长度为,
当时,,重合,此时,不合题意,舍去.
故答案为:0或.
【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出.
36. 1
【分析】设,由可求出;将化为关于的关系式即可求出最值.
【详解】设,,为边长为1的等边三角形,,

,为边长为的等边三角形,,



所以当时,的最小值为.
故答案为:1;.
37.
【分析】根据正八边形的结构特征,分别以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,即可求出各顶点的坐标,设,再根据平面向量模的坐标计算公式即可得到,然后利用即可解出.
【详解】以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如图所示:
则,,设,于是,
因为,所以,故的取值范围是.
故答案为:.
38.
【分析】利用向量模的平方等于向量的平方化简条件得,再根据向量夹角公式求函数关系式,根据函数单调性求最值.
【详解】,


.
故答案为:.
【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.
39.
【分析】可得,利用平面向量数量积的定义求得的值,然后以点为坐标原点,所在直线为轴建立平面直角坐标系,设点,则点(其中),得出关于的函数表达式,利用二次函数的基本性质求得的最小值.
【详解】,,,

解得,
以点为坐标原点,所在直线为轴建立如下图所示的平面直角坐标系,
,
∵,∴的坐标为,
∵又∵,则,设,则(其中),
,,

所以,当时,取得最小值.
故答案为:;.
【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.
40.
【分析】设,由平面向量的知识可得,再结合柯西不等式即可得解.
【详解】由题意,设,
则,即,
又向量在方向上的投影分别为x,y,所以,
所以在方向上的投影,
即,
所以,
当且仅当即时,等号成立,
所以的最小值为.
故答案为:.
【点睛】关键点点睛:
解决本题的关键是由平面向量的知识转化出之间的等量关系,再结合柯西不等式变形即可求得最小值.
41.(1);(2).
【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线的方程为,与抛物线方程联立,并利用韦达定理表示,并利用,求直线的斜率,验证后,即可得到直线方程.
【详解】解:(1)由椭圆可知,,
所以,,则,
因为抛物线的焦点为,可设抛物线方程为,
所以,即.
所以抛物线的标准方程为.
(2)由椭圆可知,,
若直线无斜率,则其方程为,经检验,不符合要求.
所以直线的斜率存在,设为,直线过点,
则直线的方程为,
设点,,
联立方程组,
消去,得.①
因为直线与抛物线有两个交点,
所以,即,
解得,且.
由①可知,
所以,
则,
因为,且,
所以,
解得或,
因为,且,
所以不符合题意,舍去,
所以直线的方程为,
即.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录