(共37张PPT)
第1课时 函数的极值
第五章 5.3.2 函数的极值与最大(小)值
学习目标
1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.
2.掌握函数极值的判定及求法.
3.掌握函数在某一点取得极值的条件.
函数极值的概念
一
问题1 如图是某处群山的截面图,你能指出山峰、山谷吗?
提示 在x1,x3,x5处是山峰,在x2,x4处是山谷.
问题2 你能描述一下在各个山峰、山谷附近的特点吗?
提示 以山峰x=x1处为例来研究,在x=x1处,它附近的函数值都比它小,且在x=x1处的左侧函数是单调递增的,且有f′(x)>0,在x=x1处的右侧函数是单调递减的,且有f′(x)<0,函数图象是连续不断的,f′(x)的变化也是连续不断的,并且有f′(x1)=0.
知识梳理
极值点与极值的概念
1.极小值点与极小值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a的左侧_________,右侧__________,则把a叫做函数y=f(x)的__________,f(a)叫做函数y=f(x)的________.
f′(x)<0
f′(x)>0
极小值点
极小值
2.极大值点与极大值
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧_________,右侧_________,则把b叫做函数y=f(x)的_________,f(b)叫做函数y=f(x)的_______.
3.极大值点、极小值点统称为_______,极大值和极小值统称为_____.
f′(x)>0
f′(x)<0
极大值点
极大值
极值点
极值
(1)极值点不是点;(2)极值是函数的局部性质;(3)函数的极值不唯一;(4)极大值与极小值两者的大小不确定;(5)极值点出现在区间的内部,端点不能是极值点;(6)若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点.
注意点:
函数y=f(x)的导函数的图象如图所示,给出下列判断:
①函数y=f(x)在区间(3,5)内单调递增;
②函数y=f(x)在区间 内单调递减;
③函数y=f(x)在区间(-2,2)内单调递增;
④当x= 时,函数y=f(x)有极大值;
⑤当x=2时,函数y=f(x)有极大值.
则上述判断中正确的序号是______.
例1
③⑤
对于①,当x∈(3,4)时,f′(x)<0,f(x)单调递减,当x∈(4,5)时,f′(x)>0,f(x)单调递增,所以①错误;
当x∈(2,3)时,f′(x)<0,f(x)单调递减,所以②错误;
对于③,当x∈(-2,2)时,f′(x)>0,f(x)单调递增,所以③正确;
对于④,当x∈(-2,2)时,f′(x)>0,
f(x)单调递增,故当
不是极大值,所以④错误;
对于⑤,由②知当x=2时,函数y=f(x)取得极大值,所以⑤正确.
解答此类问题要先搞清楚所给的图象是原函数还是导函数的,对于导函数的图象,重点考查在哪个区间上为正,哪个区间上为负,在哪个点处与x轴相交,在该点附近的导数值是如何变化的,若是由正值变为负值,则在该点处取得极大值;若是由负值变为正值,则在该点处取得极小值.
反思感悟
跟踪训练1
已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为
A.1 B.2
C.3 D.4
√
由图象,设f′(x)与x轴负半轴的两个交点的横坐标分别为c,d,其中c所以此时函数f(x)在(-∞,c),(d,b)上单调递增,
在(c,d)上,f′(x)<0,此时f(x)在(c,d)上单调递减,
所以x=c时,函数取得极大值,x=d时,函数取得极小值.
则函数y=f(x)的极小值点的个数为1.
求函数的极值
二
求下列函数的极值:
(1)f(x)=x3-3x2-9x+5;
例2
函数f(x)的定义域为R.
f′(x)=3x2-6x-9,
令f′(x)=0,
即3x2-6x-9=0,
解得x1=-1,x2=3.
当x变化时,f(x),f′(x)的变化情况如下表:
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
f′(x) + 0 - 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
∴当x=-1时,函数y=f(x)有极大值,
且f(-1)=10;
当x=3时,函数y=f(x)有极小值,且f(3)=-22.
(2)f(x)=x-aln x(a∈R).
f(x)=x-aln x的定义域为(0,+∞),
①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
②当a>0时,由f′(x)=0,
解得x=a.
又当x∈(0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,
从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值.
综上,当a≤0时,函数f(x)无极值;
当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值.
函数极值和极值点的求解步骤
(1)确定函数的定义域.
(2)求方程f′(x)=0的根.
(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并列成表格.
(4)由f′(x)在方程f′(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况.
反思感悟
跟踪训练2
求下列函数的极值:
(1)f(x)=x3-x;
函数f(x)的定义域为R.
当x变化时,f(x)和f′(x)变化情况如下表:
x
f′(x) + 0 - 0 +
f(x) 单调递增 单调递减 单调递增
(2)f(x)=x2e-x.
函数f(x)的定义域为R,
f′(x)=2xe-x+x2·e-x·(-x)′=2xe-x-x2·e-x=x(2-x)e-x.
令f′(x)=0,得x(2-x)·e-x=0,解得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,2) 2 (2,+∞)
f′(x) - 0 + 0 -
f(x) 单调递减 0 单调递增 4e-2 单调递减
因此当x=0时,f(x)取得极小值,且极小值为f(0)=0;
由极值求参数的值或范围
三
(1)若函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a=_____,b=______.
例3
4
-11
f′(x)=3x2+2ax+b,
但由于当a=-3,b=3时,
f′(x)=3x2-6x+3=3(x-1)2≥0,
故f(x)在R上单调递增,不可能在x=1处取得极值,
不符合题意,应舍去.
而当a=4,b=-11时,经检验知符合题意,
故a,b的值分别为4,-11.
(2)已知函数f(x)= (x∈R,m为常数),在区间(1,
+∞)内有两个极值点,求实数m的取值范围.
f′(x)=x2-(m+3)x+m+6.
因为函数f(x)在(1,+∞)内有两个极值点,
所以f′(x)=x2-(m+3)x+m+6在(1,+∞)内与x轴有两个不同的交点,如图所示.
解得m>3.
故实数m的取值范围是(3,+∞).
已知函数的极值求参数的方法
(1)对于已知可导函数的极值求参数的问题,解题的切入点是极值存在的条件:极值点处的导数值为0,极值点两侧的导数值异号.
注意:求出参数后,一定要验证是否满足题目的条件.
(2)对于函数无极值的问题,往往转化为其导函数的值非负或非正在某区间内恒成立的问题,即转化为f′(x)≥0或f′(x)≤0在某区间内恒成立的问题,此时需注意不等式中的等号是否成立.
反思感悟
跟踪训练3
若函数f(x)= 的图象与直线y=a恰有三个不同的交点,
则实数a的取值范围是__________.
∴f′(x)=x2-4=(x+2)(x-2).
令f′(x)=0,得x=2或x=-2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f′(x) + 0 - 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
且f(x)在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增.
根据函数单调性、极值的情况,它的
图象大致如图所示,
课堂
小结
1.知识清单:
(1)函数极值的概念.
(2)函数极值的判定及求法.
(3)函数极值的应用.
2.方法归纳:方程思想、分类讨论.
3.常见误区:导数值等于零不是此点为极值点的充要条件.