2022学年第二学期期末调研测试卷
高二数学参考答案
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有
一项时符合题目要求的
题号
3
4
5
6
8
答案
B
D
A
A
D
C
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合
题目要求全部选对的得5分,有选错的得0分,部分选对的得2分
题号
9
10
11
12
答案
ABD
AD
BC
ACD
三、填空题:本题共4小题,每小题5分,共20分
13.4,8,12,16(答案不唯一,写出其中一个即可):
14
2P,4
15.12:
16.16π或24π
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)设袋子中装有大小相同的6个红球和4个白球,现从袋中任取4个
小球(每球取出的机会均等)
(1)求取出的4个小球中红球个数比白球个数多的概率:
(2)若取出一个红球记2分,取出一个白球记1分,X表示取出的4个球的总得分,求
随机变量X的分布列和数学期望
解:(1)取出的4个小球中红球个数比白球个数多的事件分为:
3个红球1白球、4个红球,-----
---2分
则p=C8C+CC-19
98
-4分
42
(2)由题意X所有可能的取值为:X=4,5,6,7,8
-8分
CHo 21
C614
所以随机变量X的分布列为
X
5
6
7
8
P
1
4
3
8
1
210
35
7
21
14
随机变量X的数学期望为
E(X)=4x,L+5x4
3
+8×1-32
8
210T⊙×35
6×7+7×
210145
,432
或者由超几何分布可知EX)=2×4×8+1×4×
)-------10分
105
18(木小题清分12分)已知所数)=g(a>0且a1)
(1)判断函数f(x)的奇偶性:
(2)若关于x的方程f(x)=log,(x-m)有实数解,求实数m的取值范围.
解:(1)由题意得2-X>0,解得-22+x
所以函数f(x)的定义域为(-2,2).--
-2分
2+8-1og2+x
又f(=log.2-x
2-x=-fx),
故函数f(x)为奇函数-5分
(2)由f(x)=log(x-m)可得x-m=
2-x
2+x
(3)则m=x+
K、4
x-2
+2+1,
-7分
x+2
令g)=x-4,+1,其中-2x+2
因为函数y=x+1、y=-
x中2在(-2,2)上为增函数,湖州市2022-2023学年高二下学期期末调研测试
数学
本试卷共6页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.
2.作答选择题时,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.不按以上要求作答的答案无效.
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B. C. D.
2.已知复数满足(i是虚数单位),则复数的共轭复数( )
A. B. C. D.
3.设,,,则( )
A. B. C. D.
4.国家于2021年8月20日表决通过了关于修改人口与计划生育法的决定,修改后的人口计生法规定,国家提倡适龄婚育、优生优育,一对夫妻可以生育三个子女,该政策被称为三孩政策.某个家庭积极响应该政策,一共生育了三个小孩,假定生男孩和生女孩是等可能的,甲表示事件“该家庭既有男孩又有女孩”,乙表示事件“该家庭最多有一个男孩”,丙表示事件“该家庭最多有一个女孩”.则下列说法正确的是( )
A.甲与乙互斥且对立 B.乙与丙互斥但不对立
C.甲与乙相互独立 D.乙与丙相互独立
5.已知函数对任意都有,则当取到最大值时,函数图象的一条对称轴是( )
A. B. C. D.
6.已知单位向量,满足,则在上的投影向量是( )
A. B. C. D.
7.有七个人站成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )
A.400种 B.720种 C.960种 D.1200种
8.已知函数的定义域为,若为偶函数,为奇函数,则( )
A. B. C. D.
二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.
9.2023年6月18日,很多商场都在搞“618”促销活动.市物价局派人对5个商场某商品同一天的销售量及其价格进行调查,得到该商品的售价元和销售量件之间的一组数据(如表所示),用最小二乘法求得关于的经验回归直线是,相关系数,则下列说法正确的有( )
90 95 100 105 110
11 10 8 6 5
A.变量与负相关且相关性较强 B.
C.当时,的估计值为14.5 D.相应于点的残差为0.4
10.已知函数的图象是由函数的图象向右平移个单位得到,则( )
A.的最小正周期为 B.在区间上单调递增
C.的图象关于直线对称 D.的图象关于点对称
11.已知,,且,则( )
A. B. C. D.
12.已知函数,,,函数的图象在点处的切线与在点处的切线互相垂直,且分别与轴交于、两点,则( )
A.为定值 B.为定值
C.直线的斜率取值范围是 D.的取值范围是
三、填空题:本大题共4小题,每小题5分,共20分.
13.已知(,且)的展开式中含有常数项,则的一个可能取值是______.
14.设随机变量服从正态分布,的分布密度曲线如图所示,若,则______,______.
15.湖州地区甲、乙、丙三所学科基地学校的数学强基小组人数之比为,三所学校共有数学强基学生48人,在一次统一考试中,所有学生的成绩平均分为117,方差为21.5.已知甲、乙两所学校的数学强基小组学生的平均分分别为118和114,方差分别为15和21,则丙学校的学生成绩的方差是______.
16.在四面体中,,,且,,异面直线,所成角为,则该四面体外接球的表面积是______.
四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
设袋子中装有大小相同的6个红球和4个白球,现从袋中任取4个小球(每球取出的机会均等).
(1)求取出的4个小球中红球个数比白球个数多的概率;
(2)若取出一个红球记2分,取出一个白球记1分,记表示取出的4个球的总得分,求随机变量的分布列和数学期望.
18.(本小题满分12分)
已知函数(且).
(1)判断函数的奇偶性;
(2)若关于的方程有实数解,求实数的取值范围.
19.(本小题满分12分)
第19届亚运会将于2023年9月23日在杭州开幕,本次亚运会共设40个大项,61个分项,482个小项.为调查学生对亚运会项目的了解情况,某大学进行了一次抽样调查,若被调查的男女生人数均为,统计得到以下列联表,经过计算可得.
男生 女生 合计
了解
不了解
合计
(1)求的值,并判断有多大的把握认为该校学生对亚运会项目的了解情况与性别有关;
(2)①为弄清学生不了解亚运会项目的原因,采用分层抽样的方法从抽取的不了解亚运会项目的学生中随机抽取9人,再从这9人中抽取3人进行面对面交流,“至少抽到一名女生”的概率;
②将频率视为概率,用样本估计总体,从该校全体学生中随机抽取10人,记其中对亚运会项目了解的人数为,求随机变量的数学期望.
附表:
0.10 0.05 0.025 0.010 0.001
2.706 3.841 5.024 6.635 10.828
附:.
20.(本小题满分12分)
设的内角,,的对边分别为,,.已知.
(1)求的大小;
(2)设的中点为,若,且,求的面积.
21.(本小题满分12分)
如图,圆台的上底面的半径为1,下底面的半径为,是圆台下底面的一条直径,是圆台上底面的一条半径,为圆上一点,点,在平面的同侧,且,.
(1)证明:平面;
(2)若三棱锥的体积为,求平面与平面所成角的正弦值.
22.(本小题满分12分)
已知函数,,.
(1)当时,求函数的单调区间;
(2)设函数的最小值为,求函数的最小值.
(其中是自然对数的底数)