乐亭县2022-2023学年高二下学期6月月考
数 学 试 题
单项选择题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.
1.函数在处的瞬时变化率为1,则( )
A.1 B.-2 C.-1 D.2
2.关于线性回归的描述,下列表述错误的是( )
A.回归直线一定经过样本中心点 B.相关系数越大,相关性越强
C.决定系数越接近1,拟合效果越好
D.残差图的带状区域越窄,拟合效果越好
3.已知随机变量X满足(a为常数),则X的方差( )A.2 B.4 C.6 D.8
4 .一个盒子中装有5个黑球和4个白球,现从中先后无放回的取2个球,记“第一次取得黑球”为事件,“第二次取得白球”为事件,则( )
A. B. C. D.
5.已知随机变量,随机变量,若,,则( )A. B. C. D.
6.已知函数,则的极大值为( )
A.-3 B.1 C.27 D.-5
7. 已知二项式的展开式中只有第4项的二项式系数最大,现从展开式中任取2项,则取到的项都是有理项的概率为( )
A. B. C. D.
8.已知函数,,若成立,则的最小值为( ) A. B. C. D.
多项选择题:本题共4小题,每小题满分5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得2分,有选错的得0分.
9.下列说法正确的有( )
A.若事件与事件互斥,则
B.若,,,则
C.若随机变量服从正态分布,,则
D.这组数据的分位数为
10.对任意实数x,有.则下列结论成立的是( )
A. B.
C. D.
11.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( )
A.若丙在甲、乙的中间(可不相邻)排队,则不同的排法有20种
B.若五位同学排队甲不在最左端,乙不在最右端,则不同的排法共有78种
C.若五位同学排队要求甲、乙必须相邻且甲、丙不能相邻,则不同的排法有36种
D.若甲、乙、丙、丁、戊五位同学被分配到三个社区参加志愿活动,每位同学只去一个社区,每个社区至少一位同学,则不同的分配方案有150种
12.已知函数为的导数,则下列说法正确的是( )
A.当时,在区间单调递减 B.当时,恒成立
C.当时,在区间上存在唯一极小值点
D.当时,有且仅有2个零点
填空题:本题共4小题,每小题5分,共20分。
13.某工厂月产品的总成本(单位:万元)与月长量(单位:万件)有如下一组数据,从散点图分析可知与线性相关.如果回归方程是,那么表格中数据的值为______.
/万件 1 2 3 4
/万件 3.8 5.6 8.2
14.在的展开式中的系数为______.
15.李老师一家要外出游玩几天,家里有一盆花交给邻居帮忙照顾,如果这几天内邻居记得浇水,那么花存活的概率为0.8,如果这几天内邻居忘记浇水,那么花存活的概率为0.3,假设李老师对邻居不了解,即可以认为邻居记得和忘记浇水的概率均为0.5,几天后李老师回来发现花还活着,则邻居记得浇水的概率为______.
16.已知函数,其中,若不等式对任意恒成立,则的最小值为______.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
17.已知.
(1)求展开式中含的项的系数;
(2)设的展开式中前三项的二项式系数的和为,的展开式中各项系数的和为,若,求实数的值.
18.陈老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的7篇,求:
(1)抽到他能背诵的课文的数量的分布列;
(2)他能及格的概率.
19.已知函数,,其中,e是自然对数的底数.
(1)若有两个零点,求a的取值范围;
(2)若的最大值等于的最小值,求a的值.
20.为了研究学生每天整理数学错题情况,某课题组在某市中学生中随机抽取了100名学生调查了他们期中考试的数学成绩和平时整理数学错题情况,并绘制了下列两个统计图表,图1为学生期中考试数学成绩的频率分布直方图,图2为学生一个星期内整理数学错题天数的扇形图.若本次数学成绩在110分及以上视为优秀,将一个星期有4天及以上整理数学错题视为“经常整理”,少于4天视为“不经常整理”.已知数学成绩优秀的学生中,经常整理错题的学生占.
数学成绩优秀 数学成绩不优秀 合计
经常整理
不经常整理
合计
(1)求图1中的值以及学生期中考试数学成绩的上四分位数;
(2)根据图1、图2中的数据,补全上方列联表,并根据小概率值的独立性检验,分析数学成绩优秀与经常整理数学错题是否有关
附:
21.某乡政府为提高当地农民收入,指导农民种植药材,并在种植药材的土地附近种草放牧,发展畜牧业.牛粪、羊粪等有机肥可以促进药材的生长,发展生态循环农业.下图所示为某农户近7年种植药材的平均收入y(单位:千元)与年份代码x的折线图.并计算得到,,,,,,,其中.
1)根据折线图判断,与哪一个适宜作为平均收入y关于年份代码x的回归方程类型?并说明理由;
(2)根据(1)的判断结果及数据,建立y关于x的回归方程,并预测2023年该农户种植药材的平均收入;
(3)结合当地的环境和气候及对种植户的调查统计分析表明:若继续种植现有的药材,农户的收入将接近“瓶颈”.要想继续提高农户的收入,则需要制定新的种植方案.在原有的土地上继续种植原有药材,质量得不到保障,且影响农户经济收入.请先分析原因,并给出建议.
附:相关系数,回归直线的斜率和截距的最小二乘法估计公式分别为:.
22.已知函数.
(1)若,求曲线在点处的切线方程;
(2)若对任意恒成立,求的取值范围.