*5.8 三元一次方程组
一、选择题
1.下列方程组中是三元一次方程组的是( ).
A. B.
C. D.
2.方程组的解为( )
A. B. C. D.
3.解方程组时,为转化为二元一次方程组,最恰当的方法是( )
A.由②③消去z B.由②③消去y C.由①②消去z D.由①③消去x
4.解方程组,以下解法不正确的是( )
A.由①,②消去z,再由①,③消去z B.由①,③消去z,再由②,③消去z
C.由①,③消去y,再由①,②消去y D.由①,②消去z,再由①,③消去y
5.若,,则x+y+z的值等于( )
A.0 B.2 C.1 D.无法求出
二、填空题
1.三元一次方程组的解是________.
2.已知xyz≠0,从方程组中求出x:y:z=___.
3.某人上午先到市场购买1只鸡2只兔3只鸭共382元,又去市场购买3只鸡2只兔1只鸭共338元,如果单价不变,他买1只鸡1只兔1只鸭需要________元
4.某茶庄为了吸引顾客,扩大销售量,准备将A、B、C三种茶具包装成甲、乙、丙、丁四种礼盒销售(包装成本忽略不计).甲礼盒装有A茶具3个,B茶具2个,C茶具2个;乙礼盒装有A茶具2个,B茶具3个,C茶具4个;丙礼盒装有A茶具2个,B茶具2个,C茶具1个;丁礼盒装有A茶具3个,B茶具4个,C茶具4个.若一个甲礼盒售价360元,利润率为20%,一个乙礼盒和一个丙礼盒成本之和为610元,且一个A茶具的利润率为25%,则一个丁礼盒的利润率为_____.
5.重庆某大学对重庆某村实施“技术助农”.该村种植有A、B、C三种经济作物,助农前,A,B,C三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B作物增加的亩数占总增加亩数的.助农前,C作物的亩产量是B作物亩产量的2.5倍,A,B两种作物的亩产量之和恰好是C作物的亩产量;助农后,A,B两种作物的亩产量分别增加了和,A,B两种作物的亩产量之和恰好仍是C作物的亩产量.若助农后,B作物的产量比助农前A,B产量之和多,而C作物的产量比助农前A,B,C三种作物产量的总和还多5%,则助农前后A作物的产量之比为__________.
6.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.
盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为__________元
三、解答题
1.(1)解方程:
(2)解三元一次方程组.(3)解方程组:.
2.一个三位数,十位数字比个位数字大2,百位数字是十位数字的2倍,如果把百位数字与个位数字对调,那么得到的三位数比原来的三位数小495.求原来的三位数.
3.某农场300名职工耕种51公顷田地,计划种植水稻、棉花和蔬菜,已知种植植物每公顷所需的劳动力人数及设备资金如下表:
农作物品种 每公顷需劳动力 每公顷需设备资金
水稻 4人 1万元
棉花 8人 1万元
蔬菜 5人 2万元
已知该农场计划投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
4.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?
5.有一商场计划到厂家购买电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1100元,乙种每台1300元,丙种每台2100元.
(1)若商场同时购进其中两种不同型号的电视机共60台,用去7万元,请你帮助商场设计进货方案.
(2)若商场同时购进三种不同型号的电视机共50台,用去6万元,请你帮助商场设计进货方案.
6.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:就是方程3x+y=11的一组“好解”;是方程组的一组“好解”.
(1)求方程x+2y=5的所有“好解”;
(2)关于x,y,k的方程组有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.
7.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的一个代数式的值.如以下问题:已知实数x、y满足,,求和的值.本题常规思路是将①,②联立组成方程组,解得、的值再代入欲求值的代数式得到答案.常规思路计算量比较大,其实本题还可以仔细观察两个方程未知数系数之间的关系,通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组,则______,______;
(2)试说明在关于x、y的方程组中,不论a取什么实数,的值始终不变;
(3)某班级组织活动购买小奖品,买3支铅笔、5块橡皮、1本笔记本共需21元,买4支铅笔、7块橡皮、1本笔记本共需28元,则购买10支铅笔、10块橡皮、10本笔记本共需多少元?
答案
一、选择题
D.C.B.D.C.
二、填空题
1.. 2.2:7:5 3.180. 4.18.75%.
5.90:271. 6.4:3. 7.155.
三、解答题
1.(1),
②﹣①得:3x﹣y=11④,
③﹣①得:15x+5y=35,即3x+y=7⑤,
④+⑤得:6x=18,
解得:x=3,
④﹣⑤得:﹣2y=4,
解得:y=﹣2,
把x=3,y=﹣2代入①得:z=﹣5,
则方程组的解为.
(2)解:
①×2-②,得
①×3+③,得
解方程组
解得
把代入①,得,
所以原方程组的解为 .
(3),
由①设,
∴,,,
把,,代入②,
∴,.
∴,,.
∴方程组的解为.
2.解:设原个位数为x,则十位数是y,百位数是z,
根据题意,得,
解得:,
答:原来的三位数是631.
3.解:设种植水稻、棉花和蔬菜的面积分别为x公顷、y公顷和z公顷,
根据题意得,解得
答:种植水稻、棉花和蔬菜的面积分别为15公顷、20公顷和16公顷.
4.解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:
,
解得.
答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.
5.解:设甲、乙、丙型号的电视机分别为x、y、z台.
(1)①若选甲、乙两种型号,则,
解得 ,
② 若选甲、丙两种型号,则,
解得 ,
③若选乙、丙两种型号,则,
解得 ,不合题意,舍去.
答:若商场同时购进其中两种不同型号的电视机,有两种进货方案:①甲:40,乙:20;②甲:56,丙:4;
(2)根据题意得,
∵x、y、z均为正整数,
∴方程组的正整数解有四组,
或或或,
综上所述,共有四种进货方案:
方案一:应进货甲型号电视机41台,乙型号电视机5台,丙型号电视机4台;
方案二:应进货甲型号电视机37台,乙型号电视机10台,丙型号电视机3台;
方案一:应进货甲型号电视机33台,乙型号电视机15台,丙型号电视机2台;
方案一:应进货甲型号电视机29台,乙型号电视机20台,丙型号电视机1台.
6.(1)
解:当y=0时,x=5;
当y=1时,x+2=5,解得x=3;
当y=2时,x+4=5,解得x=1,
所以方程x+2y=5的所有“好解”为或或;
(2)
解:有.
,
②﹣①得4y+2k=12,则k=6﹣2y,
①×3﹣②得2x﹣2y=18,则x=9+y,
∵x、y、k为非负整数,
∴6﹣2y≥0,解得y≤3,
∴y=0、1、2,3,
当y=0时,x=9,k=6;当y=1,x=10,k=4;当y=2时,x=11,k=2,当y=3时,x=12,k=0,
∴关于x,y,k的方程组的“好解”为或或或.
7.(1)
解:
①-②得:,
得:,
等式两边同时除以3得:,
故答案为:-1;3.
(2)
证明:
得:,
等式两边同时除以2得:,
得:,
等式两边同时除以2得:,
因此不论a取什么实数,的值始终不变.
(3)
解:设铅笔、橡皮、笔记本的单价分别为x,y,z元,
由题意得,
得:,
等式两边同时乘以2得:,
得:,
故,
即购买10支铅笔、10块橡皮、10本笔记本共需70元.