人教版数学八年级上册13.1.1轴对称——探索轴对称的性质 教学设计(含有表格和图片)

文档属性

名称 人教版数学八年级上册13.1.1轴对称——探索轴对称的性质 教学设计(含有表格和图片)
格式 docx
文件大小 220.6KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-07-05 14:13:32

图片预览

文档简介

轴对称——探索轴对称的性质 教学设计
教学目标:
1.经历探索轴对称的基本性质的过程,理解在成轴对称的两个图形中,对应点的连线被对称轴垂直平分.
2、通过观察轴对称的对称性,培养学生观察、分析、归纳问题的能力。
重点:探索轴对称的性质
难点:探索过程中渗透、培养学生观察、分析、归纳问题的能力
教学过程:
温故而知新:
上堂课我们学习了轴对称图形与两个图形成轴对称,现在一起来复习回顾这两个概念。
轴对称图形 两个图形成轴对称
定义 如果一个平面图形沿着一条直线折叠, 直线两旁的部分能够互相重合,这个图形就叫做轴对称图形 把一个图形沿着一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称。
图形
联系 把轴对称图形看作两个图形就成了成轴对称,把两个成轴对称的图形看作一个图形就说轴对称图形。
区别 轴对称图形的性质 两个图形的关系
问题提出 :
小明提出:“两个图形关于对称轴成轴对称,轴对称有什么 性质呢”?
问题探究分析:
预测1:关于对称轴对称的两个图形全等。
定义:把一个图形沿着一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称。可以知道这两个图形全等。根据全等的性质可知对应边相等,对应角相等。
实践:对应点所连线段与对称轴的关系
折一折:
把一张纸片对折,扎一个小孔,然后展开铺平,记得到的两个小孔为点A与A′,折痕为MN,连接AA′交MN于点O。
猜一猜:线段OA与OA′有怎样的大小关系?线段AA′与直线MN有怎样的位置关系?猜想一下
量一量:请用直尺和量角器量一量,你的猜想是否正确。
议一议:
1、把一张纸片对折,扎两个小孔分别记为A,B,然后展开铺平,记A,B的对应点分别为A’,B’折痕为MN,连接AA′,BB’交MN于点O。上面的猜想是否依然成立呢?
如果扎不在同一直线上的三个小孔呢?结论是否成立呢?
分别连接AB,BC,CA,A′B′,B′C′,C′A′,在△ABC的一条边上任取一点D,想一想点D关于直线MN成轴对称的点D′的位置在哪?
如果是轴对称图形,这样的结论还成立吗?
说一说:和同伴交流你的想法。
结论1:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
符号语言:
∵△ABC与△A’B’C’关于直线MN对称
∴CO=C’O
∠COM=∠C’OM=90°
则直线MN垂直平分CC’
结论2:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
符号语言:
∵直线MN时正五边形ABCDE的对称轴
∴ BO=EO,∠AOB=∠AOE-90°
则MN垂直平分线段BE
课堂小结:
课后作业:完成《探索轴对称性质》专项练习