课时培优作业
2.6 有理数的乘法与除法(1)
1.有理数乘法的符号法则是针对两个有理数 1.计算.
相乘的情况,对于多个不为0的数相乘不适用. ()( 11 - )×3= ;
2.两个有理数相乘的步骤是:先确定积的符 3
号,再确定积的绝对值. (2)( 1-4 )× =-2;3.互为倒数的两个数相乘等于1.
(3)(-2017)×0= ;
() 54 -
, 、 ( 3 ) (
3
× -5 )= .预习本节内容 观察水位连续上涨 下降的动
画并回答课本提出的问题. 2.规定一种新的运算:a△b=a·b-a-b+1.
1.如果用有理数的运算来研究上面的问题,你 如,3△4=3×4-3-4+1.
应该怎样做 (可以分组讨论) 请比较大小:(-3)△4 (填“<”“>”
2.对照本节内容看谁的想法好 或“=”)4△(-3).
3.解决本节内容试一试. 3.若ab<0,则必有 ( )
4.填写本节内容表格. A.a>0,b>0
5.总结有理数乘法法则. B.a<0,b<0
C.a>0,b<0
D.a,b一正一负
4.已知|a+5|+|b-3|+|c+2|=0,求-abc
的值.
1.甲水库的水位每天上升2厘米,5天后甲水
库的水位的变化量为 厘米,如果上升
记为正,则用式子表示甲水库的水位变化量为:
(+2)×5= (厘米).
2.一个有理数和它的相反数的积 ( )
A.符号必为正 B.符号必为负
C.一定不大于0 D.一定不小于0 1.计算(-1)·(-2013)-(-1)·13的结果是
3.下列说法错误的是 ( ) ( )
A.一个数同0相乘,仍得0 A.2026 B.2000
B.一个数同1相乘,仍得原数 C.-2026 D.-2000
C.一个数同-1相乘,得原数的相反数 2.125×4×3=2000这个式子显然不等,可是
D.互为相反数的两个数的积为1 如果算式中巧妙地插入两个数字“7”,这个等式便
4.计算. 可以成立,你知道这两个7应该插在哪吗
(1)(-6)×(+8)
(2)(
2
-0.36)× (-9 )
2 44.增加了 增加了360元 =1,所以a 为5或1,b为-1或-3,则A,
★课后作业 B 两点间的最大距离是8,最小距离是2.
1.B 2.C 3.10000 4.(1)-7 2.5 有理数的加法与减法(4)
(2)0 (3)37 (4)-23 5.盈利 盈利
37元 6.(1)该公司股票在本周内上涨, ★课堂作业
上涨3.3元. (2)若每股27元,本周内最高 1.C 2.B 3.B 4.C 5.C
价每股是30.6元,最低价每股是27.25元. 196.(1) ()
★新题看台 30
2 -45.08
★课后作业
1.C 2.(2)
5
-1012 1.C 2.D 3.C 4.C 5.B 6.负
8、负3、正1、负7的和 负8减3加1减7
2.5 有理数的加法与减法(3) 7.-1 -6 8.-3.5+17-12-2+23
★课堂作业 3 3 9.-0.3+ 1 - ÷ ()
è 3 - 10.1 -6 10 4
1.B 2.D 3.B 4.B 5.D 6.D (2)-4 11.(1)周四最高 周二最低
7.B 8.(1)17 (2)-14.3 (3)7.5 (2)上升了
★课后作业 ★新题看台
1.12 24 2.30 3.A 4.D 5.D 1.-16 2.50
1
6.2 7.22 8.-5.2 2.6 有理数的乘法与除法(1)
★新题看台
★课堂作业
1.因为|a+b|=-(a+b),所以a+b
1.10 10 2.C 3.D 4.(1)-48
<0. (2)0.08
所以a=21,b=-27,或a=-21,b=
课后作业
-27. ★
当a=21,b=-27时, 1.(1)-1 (2)8 (3)0 (4)1 2.=
a-b=21-(-27)=21+27=48; 3.D 4.-30
当a=-21,b=-27时, ★新题看台
a-b=-21-(-27)=-21+27=6, 1.A
故a-b的值为48或6. 2.解:①若是7125,则7125×4×3=
2.解:(1)数轴上表示-3的点与表示 85500,不合题意;
4的点相距|-3-4|=7(个)单位长度. ②若是1725,则1725×4×3=20700,
(2)数轴上表示2的点先向右移动2个单 符合题意;
位长度,再向左移动5个单位长度,最后到 ③若是1275,则1275×4×3=15300,
达的点表示的数是2+2-5=-1. (3)数 不合题意;
轴上若点A 表示的数是2,点B 与点A 间 ④若是1257,则1257×4×3=15084,
的距离为3,则点B 表示的数是2-3=-1 不合题意.
或2+3=5. (4)因为|a-3|=2,|b+2| 故答案是:1725×4×3=20700.
·4·