完全平方公式(二)添括号 导学案

文档属性

名称 完全平方公式(二)添括号 导学案
格式 zip
文件大小 14.9KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2014-10-19 13:11:40

图片预览

文档简介

“136”导学案——八年级数学(上)
编号: 班级: 姓名:
课题:完全平方公式(二)添括号
主备: 审核: 时间:2014年 9 月 第 周
一、学习目标
1、掌握完全平方公式的推导及其应用,添括号的法则在公式里的运用。
2、综合运用乘法公式进行计算。
二、自主预习
根据条件列式:
⑴(a+b)(a-b)=__________
⑵(a+b)2=__________ (a-b)2=__________
⑶a-2b-c一共有__________项,各项分别是__________。
去括号法则:a+(b+c)= __________,a-(b+c)= __________.
添括号法则:a+b+c=a+__________,a―b―c=a-__________.
法则:添括号时,如果括号前面是正号,括到 ( http: / / www.21cnjy.com )括号里的各项__________符号;如果括号前面是负号,括到括号里的各项__________符号。
三、合作探究
活动1:1、按要求将2x2+3x-6
⑴写成一个单项式与一个二项式的和;
⑵写在一个单项式与一个二项式的差.
2、在下列( )里填上适当的项,使其符号(a+b)(a-b)的形式:
⑴(a+b-c)(a-b+c)=[a+( )][a-( )].
⑵(2a―b―c)(―2a―b+c)=[ ( )+ ( )][ ( )-( )]
活动2:计算
⑴(a-m+2n)2 ⑵(x-y-m+n)(x-y+m-n)
⑶(2x―y―3)(2x-y+3) ⑷(x―2y―z)2
四、当堂评价
1、下列等式中,不成立的是( )
A、a-b+c=(-a+b-c) B、a―b+c=a―(b-c)
C、a-b+c=-(-a+b)-c D、a-b+c=a+(-b+c)
2、填空:3mn-2n2+1=2mn-( )
a+b+c-d=a+( ) a-b+c-d=a-( )
x+2y-3z=2y-( )
3、计算:⑴(x+y+z)(x+y-z) ⑵(a―2b―3c)2
4、已知a+b=5,ab=-6,求下列各式的值:
⑴a2+b2 ⑵(a-b)2
五、拓展提升
1、(x+2y-3)(x-2y+3) 2、(a+b+c)2
3、(x+5)2-(x-2)(x-3) 4、(3a+b-2)(3a-b+2)
5、(a+b-c)2
六、课后检测
1、填空:(a-b-c)2=[a-______]2=a2-______+______=a2+______
2、若(x+)2=9,则(x-)2的值为__________.
3、若(x+y)2=9,(x-y)2=5,则xy=________;若x+y=-5,xy=2,则(x-y)2=________.
4、已知x+y=-5,xy=6,则x2+y2的值是________.
5、计算:
⑴(x+3)(x-3)(x2-9) ⑵(a+2b-c)(a―2b―c) ⑶512+492
6、化简求值:[2x2-(x+y)(x-y)][(―x―y)(y-x)+2y2],其中x=1,y=2.
7、已知,求的值.
七、课堂小结:学生总结,这节课学到了什么?
八、教学反思: