07:空间向量与立体几何(原卷版+解析版)-2023全国高考数学真题分项汇编

文档属性

名称 07:空间向量与立体几何(原卷版+解析版)-2023全国高考数学真题分项汇编
格式 zip
文件大小 6.7MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2023-07-07 13:40:36

文档简介

中小学教育资源及组卷应用平台
07:空间向量与立体几何-2023全国高考数学真题分项汇编
一、单选题
1.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为( )

A. B.
C. D.
2.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为( )
A. B. C. D.
3.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
4.(2023·全国·统考高考真题)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为( )
A.1 B. C.2 D.3
5.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
6.(2023·全国·统考高考真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )

A.24 B.26 C.28 D.30
7.(2023·全国·统考高考真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A. B. C. D.
二、多选题
8.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为 B.该圆锥的侧面积为
C. D.的面积为
9.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
三、解答题
10.(2023·天津·统考高考真题)三棱台中,若面,分别是中点.

(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
11.(2023·北京·统考高考真题)如图,在三棱锥中,平面,.

(1)求证:平面PAB;
(2)求二面角的大小.
12.(2023·全国·统考高考真题)如图,在正四棱柱中,.点分别在棱,上,.

(1)证明:;
(2)点在棱上,当二面角为时,求.
13.(2023·全国·统考高考真题)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;
(2)证明:平面平面BEF;
(3)求二面角的正弦值.
14.(2023·全国·统考高考真题)如图,在三棱柱中,底面ABC,,到平面的距离为1.

(1)证明:;
(2)已知与的距离为2,求与平面所成角的正弦值.
15.(2023·全国·统考高考真题)如图,在三棱锥中,,,,,的中点分别为,点在上,.
(1)求证://平面;
(2)若,求三棱锥的体积.
16.(2023·全国·统考高考真题)如图,三棱锥中,,,,E为BC的中点.

(1)证明:;
(2)点F满足,求二面角的正弦值.
17.(2023·全国·统考高考真题)如图,在三棱柱中,平面.

(1)证明:平面平面;
(2)设,求四棱锥的高.
四、填空题
18.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.
19.(2023·全国·统考高考真题)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则________.
20.(2023·全国·统考高考真题)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有____________个公共点.
21.(2023·全国·统考高考真题)在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.
22.(2023·全国·统考高考真题)在正四棱台中,,则该棱台的体积为________.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
07:空间向量与立体几何-2023全国高考数学真题分项汇编
一、单选题
1.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为( )

A. B.
C. D.
【答案】C
【分析】先根据线面角的定义求得,从而依次求,,,,再把所有棱长相加即可得解.
【详解】如图,过做平面,垂足为,过分别做,,垂足分别为,,连接,

由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为和,
所以.
因为平面,平面,所以,
因为,平面,,
所以平面,因为平面,所以,.
同理:,又,故四边形是矩形,
所以由得,所以,所以,
所以在直角三角形中,
在直角三角形中,,,
又因为,
所有棱长之和为.
故选:C
2.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为( )
A. B. C. D.
【答案】B
【分析】分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.先证平面,则可得到,再证.由三角形相似得到,,再由即可求出体积比.
【详解】如图,分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.

因为平面,平面,所以平面平面.
又因为平面平面,,平面,所以平面,且.
在中,因为,所以,所以,
在中,因为,所以,
所以.
故选:B
3.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
【答案】C
【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.
【详解】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,
又是等边三角形,则,从而为二面角的平面角,即,
显然平面,于是平面,又平面,
因此平面平面,显然平面平面,
直线平面,则直线在平面内的射影为直线,
从而为直线与平面所成的角,令,则,在中,由余弦定理得:

由正弦定理得,即,
显然是锐角,,
所以直线与平面所成的角的正切为.
故选:C
4.(2023·全国·统考高考真题)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为( )
A.1 B. C.2 D.3
【答案】A
【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB得解.
【详解】取中点,连接,如图,

是边长为2的等边三角形,,
,又平面,,
平面,
又,,
故,即,
所以,
故选:A
5.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
【答案】C
【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;
法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.
【详解】法一:
连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,则,
又,,所以,则,
又,,所以,则,
在中,,
则由余弦定理可得,
故,则,
故在中,,
所以,
又,所以,
所以的面积为.
法二:
连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,
在中,,
则由余弦定理可得,故,
所以,则,
不妨记,
因为,所以,
即,
则,整理得①,
又在中,,即,则②,
两式相加得,故,
故在中,,
所以,
又,所以,
所以的面积为.
故选:C.
6.(2023·全国·统考高考真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )

A.24 B.26 C.28 D.30
【答案】D
【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.
【详解】如图所示,在长方体中,,,
点为所在棱上靠近点的三等分点,为所在棱的中点,
则三视图所对应的几何体为长方体去掉长方体之后所得的几何体,

该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,
其表面积为:.
故选:D.
7.(2023·全国·统考高考真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A. B. C. D.
【答案】B
【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.
【详解】在中,,而,取中点,连接,有,如图,
,,由的面积为,得,
解得,于是,
所以圆锥的体积.
故选:B
二、多选题
8.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为 B.该圆锥的侧面积为
C. D.的面积为
【答案】AC
【分析】根据圆锥的体积、侧面积判断A、B选项的正确性,利用二面角的知识判断C、D选项的正确性.
【详解】依题意,,,所以,
A选项,圆锥的体积为,A选项正确;
B选项,圆锥的侧面积为,B选项错误;
C选项,设是的中点,连接,
则,所以是二面角的平面角,
则,所以,
故,则,C选项正确;
D选项,,所以,D选项错误.
故选:AC.

9.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
【答案】ABD
【分析】根据题意结合正方体的性质逐项分析判断.
【详解】对于选项A:因为,即球体的直径小于正方体的棱长,
所以能够被整体放入正方体内,故A正确;
对于选项B:因为正方体的面对角线长为,且,
所以能够被整体放入正方体内,故B正确;
对于选项C:因为正方体的体对角线长为,且,
所以不能够被整体放入正方体内,故C不正确;
对于选项D:因为,可知底面正方形不能包含圆柱的底面圆,
如图,过的中点作,设,
可知,则,
即,解得,
且,即,
故以为轴可能对称放置底面直径为圆柱,
若底面直径为的圆柱与正方体的上下底面均相切,设圆柱的底面圆心,与正方体的下底面的切点为,
可知:,则,
即,解得,
根据对称性可知圆柱的高为,
所以能够被整体放入正方体内,故D正确;
故选:ABD.
三、解答题
10.(2023·天津·统考高考真题)三棱台中,若面,分别是中点.

(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
【答案】(1)证明见解析
(2)
(3)
【分析】(1)先证明四边形是平行四边形,然后用线面平行的判定解决;
(2)利用二面角的定义,作出二面角的平面角后进行求解;
(3)方法一是利用线面垂直的关系,找到垂线段的长,方法二无需找垂线段长,直接利用等体积法求解
【详解】(1)
连接.由分别是的中点,根据中位线性质,//,且,
由棱台性质,//,于是//,由可知,四边形是平行四边形,则//,
又平面,平面,于是//平面.
(2)过作,垂足为,过作,垂足为,连接.
由面,面,故,又,,平面,则平面.
由平面,故,又,,平面,于是平面,
由平面,故.于是平面与平面所成角即.
又,,则,故,在中,,则,
于是

(3)[方法一:几何法]

过作,垂足为,作,垂足为,连接,过作,垂足为.
由题干数据可得,,,根据勾股定理,,
由平面,平面,则,又,,平面,于是平面.
又平面,则,又,,平面,故平面.
在中,,
又,故点到平面的距离是到平面的距离的两倍,
即点到平面的距离是.
[方法二:等体积法]

辅助线同方法一.
设点到平面的距离为.

.
由,即.
11.(2023·北京·统考高考真题)如图,在三棱锥中,平面,.

(1)求证:平面PAB;
(2)求二面角的大小.
【答案】(1)证明见解析
(2)
【分析】(1)先由线面垂直的性质证得,再利用勾股定理证得,从而利用线面垂直的判定定理即可得证;
(2)结合(1)中结论,建立空间直角坐标系,分别求得平面与平面的法向量,再利用空间向量夹角余弦的坐标表示即可得解.
【详解】(1)因为平面平面,
所以,同理,
所以为直角三角形,
又因为,,
所以,则为直角三角形,故,
又因为,,
所以平面.
(2)由(1)平面,又平面,则,
以为原点,为轴,过且与平行的直线为轴,为轴,建立空间直角坐标系,如图,

则,
所以,
设平面的法向量为,则,即
令,则,所以,
设平面的法向量为,则,即,
令,则,所以,
所以,
又因为二面角为锐二面角,
所以二面角的大小为.
12.(2023·全国·统考高考真题)如图,在正四棱柱中,.点分别在棱,上,.

(1)证明:;
(2)点在棱上,当二面角为时,求.
【答案】(1)证明见解析;
(2)1
【分析】(1)建立空间直角坐标系,利用向量坐标相等证明;
(2)设,利用向量法求二面角,建立方程求出即可得解.
【详解】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,

则,


又不在同一条直线上,
.
(2)设,
则,
设平面的法向量,
则,
令 ,得,

设平面的法向量,
则,
令 ,得,


化简可得,,
解得或,
或,
.
13.(2023·全国·统考高考真题)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;
(2)证明:平面平面BEF;
(3)求二面角的正弦值.
【答案】(1)证明见解析;
(2)证明见解析;
(3).
【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.
(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.
(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.
【详解】(1)连接,设,则,,,
则,
解得,则为的中点,由分别为的中点,
于是,即,则四边形为平行四边形,
,又平面平面,
所以平面.

(2)由(1)可知,则,得,
因此,则,有,
又,平面,
则有平面,又平面,所以平面平面.
(3)过点作交于点,设,
由,得,且,
又由(2)知,,则为二面角的平面角,
因为分别为的中点,因此为的重心,
即有,又,即有,
,解得,同理得,
于是,即有,则,
从而,,
在中,,
于是,,
所以二面角的正弦值为.

14.(2023·全国·统考高考真题)如图,在三棱柱中,底面ABC,,到平面的距离为1.

(1)证明:;
(2)已知与的距离为2,求与平面所成角的正弦值.
【答案】(1)证明见解析
(2)
【分析】(1)根据线面垂直,面面垂直的判定与性质定理可得平面,再由勾股定理求出为中点,即可得证;
(2)利用直角三角形求出的长及点到面的距离,根据线面角定义直接可得正弦值.
【详解】(1)如图,

底面,面,
,又,平面,,
平面ACC1A1,又平面,
平面平面,
过作交于,又平面平面,平面,
平面
到平面的距离为1,,
在中,,
设,则,
为直角三角形,且,
,,,
,解得,

(2),

过B作,交于D,则为中点,
由直线与距离为2,所以
,,,
在,,
延长,使,连接,
由知四边形为平行四边形,
,平面,又平面,
则在中,,,
在中,,,
,
又到平面距离也为1,
所以与平面所成角的正弦值为.
15.(2023·全国·统考高考真题)如图,在三棱锥中,,,,,的中点分别为,点在上,.
(1)求证://平面;
(2)若,求三棱锥的体积.
【答案】(1)证明见解析
(2)
【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.
(2)作出并证明为棱锥的高,利用三棱锥的体积公式直接可求体积.
【详解】(1)连接,设,则,,,
则,
解得,则为的中点,由分别为的中点,
于是,即,
则四边形为平行四边形,
,又平面平面,
所以平面.
(2)过作垂直的延长线交于点,
因为是中点,所以,
在中,,
所以,
因为,
所以,又,平面,
所以平面,又平面,
所以,又,平面,
所以平面,
即三棱锥的高为,
因为,所以,
所以,
又,
所以.
16.(2023·全国·统考高考真题)如图,三棱锥中,,,,E为BC的中点.

(1)证明:;
(2)点F满足,求二面角的正弦值.
【答案】(1)证明见解析;
(2).
【分析】(1)根据题意易证平面,从而证得;
(2)由题可证平面,所以以点为原点,所在直线分别为轴,建立空间直角坐标系,再求出平面的一个法向量,根据二面角的向量公式以及同角三角函数关系即可解出.
【详解】(1)连接,因为E为BC中点,,所以①,
因为,,所以与均为等边三角形,
,从而②,由①②,,平面,
所以,平面,而平面,所以.
(2)不妨设,,.
,,又,平面平面.
以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:

设,
设平面与平面的一个法向量分别为,
二面角平面角为,而,
因为,所以,即有,
,取,所以;
,取,所以,
所以,,从而.
所以二面角的正弦值为.
17.(2023·全国·统考高考真题)如图,在三棱柱中,平面.

(1)证明:平面平面;
(2)设,求四棱锥的高.
【答案】(1)证明见解析.
(2)
【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;
(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.
【详解】(1)证明:因为平面,平面,
所以,
又因为,即,
平面,,
所以平面,
又因为平面,
所以平面平面.
(2)如图,

过点作,垂足为.
因为平面平面,平面平面,平面,
所以平面,
所以四棱锥的高为.
因为平面,平面,
所以,,
又因为,为公共边,
所以与全等,所以.
设,则,
所以为中点,,
又因为,所以,
即,解得,
所以,
所以四棱锥的高为.
四、填空题
18.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.
【答案】
【分析】方法一:割补法,根据正四棱锥的几何性质以及棱锥体积公式求得正确答案;方法二:根据台体的体积公式直接运算求解.
【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,
所以正四棱锥的体积为,
截去的正四棱锥的体积为,
所以棱台的体积为.
方法二:棱台的体积为.
故答案为:.
19.(2023·全国·统考高考真题)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则________.
【答案】2
【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解.
【详解】如图,将三棱锥转化为直三棱柱,
设的外接圆圆心为,半径为,
则,可得,
设三棱锥的外接球球心为,连接,则,
因为,即,解得.
故答案为:2.
【点睛】方法点睛:多面体与球切、接问题的求解方法
(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;
(2)若球面上四点P、A、B、C构成的三条线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解;
(3)正方体的内切球的直径为正方体的棱长;
(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;
(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
20.(2023·全国·统考高考真题)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有____________个公共点.
【答案】12
【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.
【详解】不妨设正方体棱长为2,中点为,取,中点,侧面的中心为,连接,如图,
由题意可知,为球心,在正方体中,,
即,
则球心到的距离为,
所以球与棱相切,球面与棱只有1个交点,
同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,
所以以EF为直径的球面与正方体每条棱的交点总数为12.
故答案为:12
21.(2023·全国·统考高考真题)在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.
【答案】
【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.
【详解】设球的半径为.
当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,
正方体的外接球直径为体对角线长,即,故;

分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,
连接,则,当球的一个大圆恰好是四边形的外接圆,球的半径达到最小,即的最小值为.
综上,.
故答案为:
22.(2023·全国·统考高考真题)在正四棱台中,,则该棱台的体积为________.
【答案】/
【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.
【详解】如图,过作,垂足为,易知为四棱台的高,

因为,
则,
故,则,
所以所求体积为.
故答案为:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录